2 research outputs found

    Area-delay Trade-offs of Texture Decompressors for a Graphics Processing Unit

    Get PDF
    Graphics Processing Units have become a booster for the microelectronics industry. However, due to intellectual property issues, there is a serious lack of information on implementation details of the hardware architecture that is behind GPUs. For instance, the way texture is handled and decompressed in a GPU to reduce bandwidth usage has never been dealt with in depth from a hardware point of view. This work addresses a comparative study on the hardware implementation of different texture decompression algorithms for both conventional (PCs and video game consoles) and mobile platforms. Circuit synthesis is performed targeting both a reconfigurable hardware platform and a 90nm standard cell library. Area-delay trade-offs have been extensively analyzed, which allows us to compare the complexity of decompressors and thus determine suitability of algorithms for systems with limited hardware resources

    On the Hardware Implementation of Triangle Traversal Algorithms for Graphics Processing

    Full text link
    Current GPU architectures provide impressive processing rates in graphical applications because of their specialized graphics pipeline. However, little attention has been paid to the analysis and study of different hardware architectures to implement specific pipeline stages. In this work we have identified one of the key stages in the graphics pipeline, the triangle traversal procedure, and we have implemented three different algorithms in hardware: bounding-box, zig-zag and Hilbert curve-based. The experimental results show that important area-performance trade-offs can be met when implementing key image processing algorithms in hardwar
    corecore