50 research outputs found

    A flexible framework for real-time thermal-aware schedulers using timed continuous petri nets

    Get PDF
    This work presents TCPN-ThermalSim, a software tool for testing Real-Time Thermal-Aware Schedulers1. This framework consists of four main modules. The first one helps the user to define the problem: Task set with periods, deadlines and worst case execution times in CPU cycles, along with the CPU characteristics, temperature and energy consumption. The second module is the Kernel simulation, which builds up a global simulation model according to the configuration module. In the third module, the user selects the scheduler algorithm. Finally the last module allows the execution of the simulation and present the results. The framework encompasses two modes: Manual and automatic. In manual mode the simulator uses the task set data provided in the first section. In automatic mode the task set is generated by parameterizing the integrated UUniFast algorithm

    Support for Programming Models in Network-on-Chip-based Many-core Systems

    Get PDF

    A Survey and Comparative Study of Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems

    Get PDF
    Multi-/many-core systems are envisioned to satisfy the ever-increasing performance requirements of complex applications in various domains such as embedded and high-performance computing. Such systems need to cater to increasingly dynamic workloads, requiring efficient dynamic resource allocation strategies to satisfy hard or soft real-time constraints. This article provides an extensive survey of hard and soft real-time dynamic resource allocation strategies proposed since the mid-1990s and highlights the emerging trends for multi-/many-core systems. The survey covers a taxonomy of the resource allocation strategies and considers their various optimization objectives, which have been used to provide comprehensive comparison. The strategies employ various principles, such as market and biological concepts, to perform the optimizations. The trend followed by the resource allocation strategies, open research challenges, and likely emerging research directions have also been provided

    A Control-Theoretic Design And Analysis Framework For Resilient Hard Real-Time Systems

    Get PDF
    We introduce a new design metric called system-resiliency which characterizes the maximum unpredictable external stresses that any hard-real-time performance mode can withstand. Our proposed systemresiliency framework addresses resiliency determination for real-time systems with physical and hardware limitations. Furthermore, our framework advises the system designer about the feasible trade-offs between external system resources for the system operating modes on a real-time system that operates in a multi-parametric resiliency environment. Modern multi-modal real-time systems degrade the system’s operational modes as a response to unpredictable external stimuli. During these mode transitions, real-time systems should demonstrate a reliable and graceful degradation of service. Many control-theoretic-based system design approaches exist. Although they permit real-time systems to operate under various physical constraints, none of them allows the system designer to predict the system-resiliency over multi-constrained operating environment. Our framework fills this gap; the proposed framework consists of two components: the design-phase and runtime control. With the design-phase analysis, the designer predicts the behavior of the real-time system for variable external conditions. Also, the runtime controller navigates the system to the best desired target using advanced control-theoretic techniques. Further, our framework addresses the system resiliency of both uniprocessor and multicore processor systems. As a proof of concept, we first introduce a design metric called thermal-resiliency, which characterizes the maximum external thermal stress that any hard-real-time performance mode can withstand. We verify the thermal-resiliency for the external thermal stresses on a uniprocessor system through a physical testbed. We show how to solve some of the issues and challenges of designing predictable real-time systems that guarantee hard deadlines even under transitions between modes in an unpredictable thermal environment where environmental temperature may dynamically change using our new metric. We extend the derivation of thermal-resiliency to multicore systems and determine the limitations of external thermal stress that any hard-real-time performance mode can withstand. Our control-theoretic framework allows the system designer to allocate asymmetric processing resources upon a multicore proiii cessor and still maintain thermal constraints. In addition, we develop real-time-scheduling sub-components that are necessary to fully implement our framework; toward this goal, we investigate the potential utility of parallelization for meeting real-time constraints and minimizing energy. Under malleable gang scheduling of implicit-deadline sporadic tasks upon multiprocessors, we show the non-necessity of dynamic voltage/frequency regarding optimality of our scheduling problem. We adapt the canonical schedule for DVFS multiprocessor platforms and propose a polynomial-time optimal processor/frequency-selection algorithm. Finally, we verify the correctness of our framework through multiple measurable physical and hardware constraints and complete our work on developing a generalized framework

    COMBINE: An Improved Directory-Based Consistency Protocol

    Get PDF
    This paper presents COMBINE, a directory-based consistency protocol for shared objects, designed for large-scale distributed systems with unreliable links. Directory-based consistency protocols support move requests, allowing to write the object locally, as well as lookup requests, providing a read-only copy of the object. They have been used in distributed shared memory implementations and are a key element of data-flow implementations of distributed software transactional memory in large-scale systems. The protocol runs on an overlay tree, whose leaves are the nodes of the system, and its main novelty is in combining requests that overtake each other as they pass through the same node. Combining requests on a simple tree structure allows the protocol to tolerate non-fifo links and handle concurrent requests. Combining also avoids race conditions and ensures that the cost of serving a request is proportional to the cost of the shortest path between the requesting node and the serving node, in the overlay tree. Using an overlay tree with a good stretch factor yields an efficient protocol

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Relational specification as a testing oracle

    Get PDF
    Software engineering community is well aware of the usefulness of formal methods for specifying, designing and testing of the software. Despite this testing literature rarely deals with specification based testing. Testing from formal specifications offers a simple, structured and more rigorous approach to the functional tests than testing techniques. An important application of specification in testing is providing test oracles. The rise of use of computers in control safety critical systems, i.e., flight control systems, necessitates that rigorous system testing is performed before the deployment. In flight control systems, requirements are mostly concerned with the safety and maneuverability of an aircraft. In this domain, the use of formal approaches to requirements specification and system verification is strongly encouraged. In our study relational notation was used to model the requirements of generic flight control system. The advantage of relational approach is that the requirements can be partitioned into less complex components. Each component is separately specified with a set a relations. The formal aspect of the relational notation is exploited in a verification framework where the specifications are used as an oracle to test a system implementation
    corecore