136 research outputs found

    Flexible N-Way MIMO Detector on GPU

    Get PDF
    This paper proposes a flexible Multiple-Input Multiple-Output (MIMO) detector on graphics processing units (GPU). MIMO detection is a key technology in broadband wireless system such as LTE,WiMAX, and 802.11n. Existing detectors either use costly sorting for better performance or sacrifice sorting for higher throughput. To achieve good performance with high thoughput, our detector runs multiple search passes in parallel, where each search pass detects the transmit stream with a different permuted detection order. We show that this flexible detector, including QR decomposition preprocessing, outperforms existing GPU MIMO detectors while maintaining good bit error rate (BER) performance. In addition, this detector can achieve different tradeoffs between throughput and accuracy by changing the number of parallel search passes.National Science Foundation (NSF

    An adaptive detector implementation for MIMO-OFDM downlink

    Get PDF
    Cognitive radio (CR) systems require flexible and adaptive implementations of signal processing algorithms. An adaptive symbol detector is needed in the baseband receiver chain to achieve the desired flexibility of a CR system. This paper presents a novel design of an adaptive detector as an application-specific instruction-set processor (ASIP). The ASIP template is based on transport triggered architecture (TTA). The processor architecture is designed in such a manner that it can be programmed to support different suboptimal multiple-input multiple-output (MIMO) detection algorithms in a single TTA processor. The linear minimum mean-square error (LMMSE) and three variants of the selective spanning for fast enumeration (SSFE) detection algorithms are considered. The detection algorithm can be switched between the LMMSE and SSFE according to the bit error rate (BER) performance requirement in the TTA processor. The design can be scaled for different antenna configurations and different modulations. Some of the algorithm architecture co-optimization techniques used here are also presented. Unlike most other detector ASIPs, high level language is used to program the processor to meet the time-to-market requirements. The adaptive detector delivers 4.88 - 49.48 Mbps throughput at a clock frequency of 200 MHz on 90 nm technology

    VLSI Implementation of a Soft-Output Signal Detector for Multi-Mode Adaptive MIMO Systems

    Get PDF
    This paper presents a multimode soft-output multiple-input multiple-output (MIMO) signal detector that is efficient in hardware cost and energy consumption. The detector is capable of dealing with spatial-multiplexing (SM),break space-division-multiple-access (SDMA), and spatial-diversity (SD) signals of 4 ✕ 4 antenna and 64-QAM modulation. Implementation-friendly algorithms, which reuse most of the mathematical operations in these three MIMO modes, are proposed to provide accurate soft detection information, i.e., log-likelihood ratio, with much reduced complexity. A unified reconfigurable VLSI architecture has been developed to eliminate the implementation of multiple detector modules. In addition, several block level technologies, such as parallel metric update and fast bit-flipping, are adopted to enable a more efficient design. To evaluate the proposed techniques, we implemented the triple-mode MIMO detector in a 65-nm CMOS technology. The core area is 0.25 mm2 with 83.7 K gates. The maximum detecting throughput is 1 Gb/s at 167-MHz clock frequency and 1.2-V supply, which archives the data rate envisioned by the emerging long-term evolution advanced standard. Under frequency-selective channels, the detector consumes 59.3-, 10.5-, and 169.6-pJ energy per bit detection in SM, SD, and SDMA modes, respectively

    Low complexity MIMO detection algorithms and implementations

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2014. Major: Electrical Engineering. Advisor: Gerald E. Sobelman. 1 computer file (PDF); ix, 111 pages.MIMO techniques use multiple antennas at both the transmitter and receiver sides to achieve diversity gain, multiplexing gain, or both. One of the key challenges in exploiting the potential of MIMO systems is to design high-throughput, low-complexity detection algorithms while achieving near-optimal performance. In this thesis, we design and optimize algorithms for MIMO detection and investigate the associated performance and FPGA implementation aspects.First, we study and optimize a detection algorithm developed by Shabany and Gulak for a K-Best based high throughput and low energy hard output MIMO detection and expand it to the complex domain. The new method uses simple lookup tables, and it is fully scalable for a wide range of K-values and constellation sizes. This technique reduces the computational complexity, without sacrificing performance and the complexity scales only sub-linearly with the constellation size. Second, we apply the bidirectional technique to trellis search and propose a high performance soft output bidirectional path preserving trellis search (PPTS) detector for MIMO systems. The comparative error analysis between single direction and bidirectional PPTS detectors is given. We demonstrate that the bidirectional PPTS detector can minimize the detection error. Next, we design a novel bidirectional processing algorithm for soft-output MIMO systems. It combines features from several types of fixed complexity tree search procedures. The proposed approach achieves a higher performance than previously proposed algorithms and has a comparable computational cost. Moreover, its parallel nature and fixed throughput characteristics make it attractive for very large scale integration (VLSI) implementation.Following that, we present a novel low-complexity hard output MIMO detection algorithm for LTE and WiFi applications. We provide a well-defined tradeoff between computational complexity and performance. The proposed algorithm uses a much smaller number of Euclidean distance (ED) calculations while attaining only a 0.5dB loss compared to maximum likelihood detection (MLD). A 3x3 MIMO system with a 16QAM detector architecture is designed, and the latency and hardware costs are estimated.Finally, we present a stochastic computing implementation of trigonometric and hyperbolic functions which can be used for QR decomposition and other wireless communications and signal processing applications

    Approximate MIMO Iterative Processing with Adjustable Complexity Requirements

    Full text link
    Targeting always the best achievable bit error rate (BER) performance in iterative receivers operating over multiple-input multiple-output (MIMO) channels may result in significant waste of resources, especially when the achievable BER is orders of magnitude better than the target performance (e.g., under good channel conditions and at high signal-to-noise ratio (SNR)). In contrast to the typical iterative schemes, a practical iterative decoding framework that approximates the soft-information exchange is proposed which allows reduced complexity sphere and channel decoding, adjustable to the transmission conditions and the required bit error rate. With the proposed approximate soft information exchange the performance of the exact soft information can still be reached with significant complexity gains.Comment: The final version of this paper appears in IEEE Transactions on Vehicular Technolog

    Hardware Accelerator for MIMO Wireless Systems

    Get PDF
    Ever increasing demand for higher data rates and better Quality of Service (QoS) for a growing number of users requires new transceiver algorithms and architectures to better exploit the available spectrum and to efficiently counter the impairments of the radio channel. Multiple-Input Multiple-Output (MIMO) communication systems employ multiple antennas at both transmitter and at the receiver to meet the requirements of next-generation wireless systems. It is a promising technology to provide increased data rates while not involving an equivalent increase in the spectral requirements. However, practical implementation of MIMO detectors poses a significant challenge and has been consistently identified as the major bottleneck for realizing the full potential that multiple antenna systems promise. Furthermore, in order to make judicious use of the available bandwidth, the baseband units have to dynamically adapt to different modes (modulation schemes, code rates etc) of operations. Flexibility and high throughput requirements often place conflicting demands on the Very Large Scale Integration (VLSI) system designer. The major focus of this dissertation is to present efficient VLSI architectures for configurable MIMO detectors that can serve as accelerators to enable the realization of next generation wireless devices feasible. Both, hard output and soft output detector architectures are considered

    Iterative Receiver Techniques for Data-Driven Channel Estimation and Interference Mitigation in Wireless Communications

    No full text
    Wireless mobile communications were initially a way for people to communicate through low data rate voice call connections. As data enabled devices allow users the ability to do much more with their mobile devices, so to will the demand for more reliable and pervasive wireless data. This is being addressed by so-called 4th generation wireless systems based on orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) antenna systems. Mobile wireless customers are becoming more demanding and expecting to have a great user experience over high speed broadband access at any time and anywhere, both indoor and outdoor. However, these promising improvements cannot be realized without an e±cient design of the receiver. Recently, receivers utilizing iterative detection and decoding have changed the fundamental receiver design paradigm from traditional separated parameter estimation and data detection blocks to an integrated iterative parameter estimator and data detection unit. Motivated by this iterative data driven approach, we develop low complexity iterative receivers with improved sensitivity compared to the conventional receivers, this brings potential benefits for the wireless communication system, such as improving the overall system throughput, increasing the macro cell coverage, and reducing the cost of the equipments in both the base station and mobile terminal. It is a challenge to design receivers that have good performance in a highly dynamic mobile wireless environment. One of the challenges is to minimize overhead reference signal energy (preamble, pilot symbols) without compromising the performance. We investigate this problem, and develop an iterative receiver with enhanced data-driven channel estimation. We discuss practical realizations of the iterative receiver for SISO-OFDM system. We utilize the channel estimation from soft decoded data (the a priori information) through frequency-domain combining and time-domain combining strategies in parallel with limited pilot signals. We analyze the performance and complexity of the iterative receiver, and show that the receiver's sensitivity can be improved even with this low complexity solution. Hence, seamless communications can be achieved with better macro cell coverage and mobility without compromising the overall system performance. Another challenge is that a massive amount of interference caused by MIMO transmission (spatial multiplexing MIMO) reduces the performance of the channel estimation, and further degrades data detection performance. We extend the iterative channel estimation from SISO systems to MIMO systems, and work with linear detection methods to perform joint interference mitigation and channel estimation. We further show the robustness of the iterative receivers in both indoor and outdoor environment compared to the conventional receiver approach. Finally, we develop low complexity iterative spatial multiplexed MIMO receivers for nonlinear methods based on two known techniques, that is, the Sphere Decoder (SD) method and the Markov Chain Monte Carlo (MCMC) method. These methods have superior performance, however, they typically demand a substantial increase in computational complexity, which is not favorable in practical realizations. We investigate and show for the first time how to utilize the a priori information in these methods to achieve performance enhancement while simultaneously substantially reducing the computational complexity. In our modified sphere decoder method, we introduce a new accumulated a priori metric in the tree node enumeration process. We show how we can improve the performance by obtaining the reliable tree node candidate from the joint Maximum Likelihood (ML) metric and an approximated a priori metric. We also show how we can improve the convergence speed of the sphere decoder (i.e., reduce the com- plexity) by selecting the node with the highest a priori probability as the starting node in the enumeration process. In our modified MCMC method, the a priori information is utilized for the firrst time to qualify the reliably decoded bits from the entire signal space. Two new robust MCMC methods are developed to deal with the unreliable bits by using the reliably decoded bit information to cancel the interference that they generate. We show through complexity analysis and performance comparison that these new techniques have improved performance compared to the conventional approaches, and further complexity reduction can be obtained with the assistance of the a priori information. Therefore, the complexity and performance tradeoff of these nonlinear methods can be optimized for practical realizations

    Récepteur itératif pour les systèmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité

    Get PDF
    Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform.Pour permettre l’accroissement de débit et de robustesse dans les futurs systèmes de communication sans fil, les processus itératifs sont de plus considérés dans les récepteurs. Cependant, l’adoption d’un traitement itératif pose des défis importants dans la conception du récepteur. Dans cette thèse, un récepteur itératif combinant les techniques de détection multi-antennes avec le décodage de canal est étudié. Trois aspects sont considérés dans un contexte MIMOOFDM: la convergence, la performance et la complexité du récepteur. Dans un premier temps, nous étudions les différents algorithmes de détection MIMO à décision dure et souple basés sur l’égalisation, le décodage sphérique, le décodage K-Best et l’annulation d’interférence. Un décodeur K-best de faible complexité (LC-K-Best) est proposé pour réduire la complexité sans dégradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de détection avec différentes techniques de codage de canal, notamment le décodeur turbo et le décodeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itérations internes et externes nécessaires est proposé. Les performances du récepteur ainsi proposé sont évaluées dans différents modèles de canal LTE, et comparées avec différentes techniques de détection MIMO. Ensuite, la complexité des récepteurs itératifs avec différentes techniques de codage de canal est étudiée et comparée pour différents modulations et rendement de code. Les résultats de simulation montrent que les approches proposées offrent un bon compromis entre performance et complexité. D’un point de vue implémentation, la représentation en virgule fixe est généralement utilisée afin de réduire les coûts en termes de surface, de consommation d’énergie et de temps d’exécution. Nous présentons ainsi une représentation en virgule fixe du récepteur itératif proposé basé sur le décodeur LC K-Best. En outre, nous étudions l’impact de l’estimation de canal sur la performance du système. Finalement, le récepteur MIMOOFDM itératif est testé sur la plateforme matérielle WARP, validant le schéma proposé
    • …
    corecore