8 research outputs found

    An unfitted hybrid high-order method for the stokes interface problem

    Get PDF
    We design and analyze a hybrid high-order method on unfitted meshes to approximate the Stokes interface problem. The interface can cut through the mesh cells in a very general fashion. A cell-agglomeration procedure prevents the appearance of small cut cells. Our main results are inf-sup stability and a priori error estimates with optimal convergence rates in the energy norm. Numerical simulations corroborate these results

    Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming

    No full text
    Discontinuous Skeletal methods approximate the solution of boundary-value problems by attaching discrete unknowns to mesh faces (hence the term skeletal) while allowing these discrete unknowns to be chosen independently on each mesh face (hence the term discontinuous). Cell-based unknowns, which can be eliminated locally by a Schur complement technique (also known as static condensation), are also used in the formulation. Salient examples of high-order Discontinuous Skeletal methods are Hybridizable Discontinuous Galerkin methods and the recently-devised Hybrid High-Order methods. Some major benefits of Discontinuous Skeletal methods are that their construction is dimension-independent and that they offer the possibility to use general meshes with polytopal cells and non-matching interfaces. In this work, we show how this mathematical flexibility can be efficiently replicated in a numerical software using generic programming. We describe a number of generic algorithms and data structures for high-order Discontinuous Skeletal methods within a “write once, run on any kind of mesh” framework. The computational efficiency of the implementation is assessed on the Poisson model problem discretized using various polytopal meshes and the Hybrid High-Order method

    Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming

    Get PDF
    International audienceDiscontinuous Skeletal methods approximate the solution of boundary-value problems by attaching discrete unknowns to mesh faces (hence the term skeletal) while allowing these discrete unknowns to be chosen independently on each mesh face (hence the term discontinuous). Cell-based unknowns, which can be eliminated locally by a Schur complement technique (also known as static condensation), are also used in the formulation. Salient examples of high-order Discontinuous Skeletal methods are Hybridizable Discontinuous Galerkin methods and the recently-devised Hybrid High-Order methods. Some major benefits of Discontinuous Skeletal methods are that their construction is dimension-independent and that they offer the possibility to use general meshes with polytopal cells and non-matching interfaces. In this work, we show how this mathematical flexibility can be efficiently replicated in a numerical software using generic programming. We describe a number of generic algorithms and data structures for high-order Discontinuous Skeletal methods within a " write once, run on any kind of mesh " framework. The computational efficiency of the implementation is assessed on the Poisson model problem discretized using various polytopal meshes and the Hybrid High-Order method

    Bridging the Hybrid High-Order and Virtual Element methods

    Get PDF
    International audienceWe present a unifying viewpoint at Hybrid High-Order and Virtual Element methods on general polytopal meshes in dimension 22 or 33, both in terms of formulation and analysis. We focus on a model Poisson problem. To build our bridge, (i) we transcribe the (conforming) Virtual Element method into the Hybrid High-Order framework, and (ii) we prove HmH^m approximation properties for the local polynomial projector in terms of which the local Virtual Element discrete bilinear form is defined. This allows us to perform a unified analysis of Virtual Element/Hybrid High-Order methods, that differs from standard Virtual Element analyses by the fact that the approximation properties of the underlying virtual space are not explicitly used. As a complement to our unified analysis, we also study interpolation in local virtual spaces, shedding light on the differences between the conforming and nonconforming cases

    Bridging the Hybrid High-Order and Virtual Element methods

    Get PDF
    International audienceWe present a unifying viewpoint at Hybrid High-Order and Virtual Element methods on general polytopal meshes in dimension 22 or 33, both in terms of formulation and analysis. We focus on a model Poisson problem. To build our bridge, (i) we transcribe the (conforming) Virtual Element method into the Hybrid High-Order framework, and (ii) we prove HmH^m approximation properties for the local polynomial projector in terms of which the local Virtual Element discrete bilinear form is defined. This allows us to perform a unified analysis of Virtual Element/Hybrid High-Order methods, that differs from standard Virtual Element analyses by the fact that the approximation properties of the underlying virtual space are not explicitly used. As a complement to our unified analysis, we also study interpolation in local virtual spaces, shedding light on the differences between the conforming and nonconforming cases

    The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications

    Get PDF
    International audienceHybrid High-Order (HHO) methods are new generation numerical methods for models based on Partial Differential Equations with features that set them apart from traditional ones. These include: the support of polytopal meshes including non star-shaped elements and hanging nodes; the possibility to have arbitrary approximation orders in any space dimension; an enhanced compliance with the physics; a reduced computational cost thanks to compact stencil and static condensation. This monograph provides an introduction to the design and analysis of HHO methods for diffusive problems on general meshes, along with a panel of applications to advanced models in computational mechanics. The first part of the monograph lays the foundation of the method considering linear scalar second-order models, including scalar diffusion, possibly heterogeneous and anisotropic, and diffusion-advection-reaction. The second part addresses applications to more complex models from the engineering sciences: non-linear Leray-Lions problems, elasticity and incompressible fluid flows
    corecore