557,386 research outputs found
Impedance analysis of new PS internal dump design
The High Luminosity Large Hadron Collider (HL-LHC) project at CERN calls for increasing beam intensity in the injector chain. In the Proton Synchrotron (PS), a pre-injector of the LHC, these intensities can result in beam instabilities and potential RF heating of machine components, such that impedance mitigation measures are required. To study these intensity effects, the PS impedance model has been developed and is continuously updated. Each new machine element that is to be added into the accelerator requires an impedance study to minimize its contribution with respect to the machine's overall impedance budget. In such a context, this paper presents the impedance analysis of the new design of the internal beam dump for the PS, showing the design process required to reduce the impedance contribution of this element. Furthermore, the impedance analysis of the currently installed beam dump is analysed in order to compare the impedance contributions of the two designs
Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches
This paper introduces simple analytical formulas for the grid impedance of
electrically dense arrays of square patches and for the surface impedance of
high-impedance surfaces based on the dense arrays of metal strips or square
patches over ground planes. Emphasis is on the oblique-incidence excitation.
The approach is based on the known analytical models for strip grids combined
with the approximate Babinet principle for planar grids located at a dielectric
interface. Analytical expressions for the surface impedance and reflection
coefficient resulting from our analysis are thoroughly verified by full-wave
simulations and compared with available data in open literature for particular
cases. The results can be used in the design of various antennas and microwave
or millimeter wave devices which use artificial impedance surfaces and
artificial magnetic conductors (reflect-array antennas, tunable phase shifters,
etc.), as well as for the derivation of accurate higher-order impedance
boundary conditions for artificial (high-) impedance surfaces. As an example,
the propagation properties of surface waves along the high-impedance surfaces
are studied.Comment: 12 pages, 10 figures, submitted to IEEE Transactions on Antennas and
Propagatio
A spatial impedance controller for robotic manipulation
Mechanical impedance is the dynamic generalization of stiffness, and determines interactive behavior by definition. Although the argument for explicitly controlling impedance is strong, impedance control has had only a modest impact on robotic manipulator control practice. This is due in part to the fact that it is difficult to select suitable impedances given tasks. A spatial impedance controller is presented that simplifies impedance selection. Impedance is characterized using ¿spatially affine¿ families of compliance and damping, which are characterized by nonspatial and spatial parameters. Nonspatial parameters are selected independently of configuration of the object with which the robot must interact. Spatial parameters depend on object configurations, but transform in an intuitive, well-defined way. Control laws corresponding to these compliance and damping families are derived assuming a commonly used robot model. While the compliance control law was implemented in simulation and on a real robot, this paper emphasizes the underlying theor
An Effective EMTR-Based High-Impedance Fault Location Method for Transmission Lines
This paper summarizes the electromagnetic time reversal (EMTR) technique for
fault location, and further numerically validates its effectiveness when the
fault impedance is negligible. In addition, a specific EMTR model considering
the fault impedance is derived, and the correctness of the model derivation is
verified by various calculation methods. Based on this, we found that when the
fault impedance is large, the existing EMTR methods might fail to accurately
locate the fault. We propose an EMTR method that improves the location effect
of high-impedance faults by injecting double-ended signals simultaneously.
Theoretical calculations show that this method can achieve accurate location
for high-impedance faults. To further illustrate the effectiveness, the
proposed method is compared with the existing EMTR methods and the most
commonly used traveling wave-based method using wavelet transform. The
simulation results show that the proposed double-ended EMTR method can
effectively locate high-impedance faults, and it is more robust against
synchronization errors compared to the traveling wave method. In addition, the
proposed method does not require the knowledge or the a priori guess of the
unknown fault impedance
Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy.
A new tri-electrode probe is presented and applied to local electrochemical impedance spectroscopy (LEIS) measurements. As opposed to two-probe systems, the three-probe one allows measurement not only of normal, but also of radial contributions of local current densities to the local impedance values. The results concerning the cases of the blocking electrode and the electrode with faradaic reaction are discussed from the theoretical point of view for a disk electrode. Numerical simulations and experimental results are compared for the case of the ferri/ferrocyanide electrode reaction at the Pt working electrode disk. At the centre of the disk, the impedance taking into account both normal and radial contributions was in good agreement with the local impedance measured in terms of only the normal contribution. At the periphery of the electrode, the impedance taking into account both normal and radial contributions differed significantly from the local impedance measured in terms of only the normal contribution. The radial impedance results at the periphery of the electrode are in good agreement with the usual explanation that the associated larger current density is attributed to the geometry of the electrode, which exhibits a greater accessibility at the electrode edge
Stochastic Impedance
The concept of impedance, which characterises the current response to a
periodical driving, is introduced in the context of stochastic transport. In
particular, we calculate the impedance for an exactly solvable model, namely
the stochastic transport of particles through a single-level quantum dot
Tapered transmission line technique based graded matching layers for thickness mode piezoelectric transducers
Conventionally, in order to acoustically match thickness mode piezoelectric transducers to a low acoustic impedance load medium, multiple quarter wavelength (QW) matching layers are employed at the front face of the device. Typically a number of layers, 2-4 in number, are employed resulting in discrete impedance steps within the acoustic matching scheme. This can result in impedance matching with limited bandwidth characteristics. This paper investigates the application of tapered transmission line filter theory to implement a graded impedance profile, through the thickness of the matching layer scheme, to solve the impedance mismatch problem whilst accounting for enhanced transducer sensitivity and bandwidth
- …
