6 research outputs found

    Impatient DNNs - Deep Neural Networks with Dynamic Time Budgets

    Full text link
    We propose Impatient Deep Neural Networks (DNNs) which deal with dynamic time budgets during application. They allow for individual budgets given a priori for each test example and for anytime prediction, i.e., a possible interruption at multiple stages during inference while still providing output estimates. Our approach can therefore tackle the computational costs and energy demands of DNNs in an adaptive manner, a property essential for real-time applications. Our Impatient DNNs are based on a new general framework of learning dynamic budget predictors using risk minimization, which can be applied to current DNN architectures by adding early prediction and additional loss layers. A key aspect of our method is that all of the intermediate predictors are learned jointly. In experiments, we evaluate our approach for different budget distributions, architectures, and datasets. Our results show a significant gain in expected accuracy compared to common baselines.Comment: British Machine Vision Conference (BMVC) 201

    Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation

    Full text link
    Convolutional neural networks have been widely deployed in various application scenarios. In order to extend the applications' boundaries to some accuracy-crucial domains, researchers have been investigating approaches to boost accuracy through either deeper or wider network structures, which brings with them the exponential increment of the computational and storage cost, delaying the responding time. In this paper, we propose a general training framework named self distillation, which notably enhances the performance (accuracy) of convolutional neural networks through shrinking the size of the network rather than aggrandizing it. Different from traditional knowledge distillation - a knowledge transformation methodology among networks, which forces student neural networks to approximate the softmax layer outputs of pre-trained teacher neural networks, the proposed self distillation framework distills knowledge within network itself. The networks are firstly divided into several sections. Then the knowledge in the deeper portion of the networks is squeezed into the shallow ones. Experiments further prove the generalization of the proposed self distillation framework: enhancement of accuracy at average level is 2.65%, varying from 0.61% in ResNeXt as minimum to 4.07% in VGG19 as maximum. In addition, it can also provide flexibility of depth-wise scalable inference on resource-limited edge devices.Our codes will be released on github soon.Comment: 10page

    Essentials of Business Analytics

    Get PDF

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore