21,874 research outputs found

    Sensing Models and Its Impact on Network Coverage in Wireless Sensor Network

    Full text link
    Network coverage of wireless sensor network (WSN) means how well an area of interest is being monitored by the deployed network. It depends mainly on sensing model of nodes. In this paper, we present three types of sensing models viz. Boolean sensing model, shadow-fading sensing model and Elfes sensing model. We investigate the impact of sensing models on network coverage. We also investigate network coverage based on Poisson node distribution. A comparative study between regular and random node placement has also been presented in this paper. This study will be useful for coverage analysis of WSN.Comment: 5 pages, 5 figures, IEEE Region 10 Colloquium and the Third ICIIS, Kharagpur, INDIA December 8-10, 200

    Study of 3D Wireless Sensor Network Based on Overlap Method

    Get PDF
    Wireless sensor network as a new information acquisition technology has profound impact on people's work and life style, has the very high research value. Energy issues important factor restricting the development of the deep WSN is node, sensor nodes for processing data collected information and communication between nodes will speed up the energy consumption of nodes. Cover the deployment strategy is directly related to the optimal distribution of target area monitoring the degree of perception and limited resources of wireless sensor network, determines the service quality of the wireless sensor network to improve the. How to design an efficient coverage algorithm directly affects the coverage and network lifetime, because the actual environment of 3D wireless sensor network is more close to people, so the 3D WSN. Covering research has more realistic significance. At present, about the research of wireless sensor network many 3D covering literature, according to the general configuration of nodes is divided into deterministic coverage and random covering two aspects. This paper presents a wireless sensor network node for 3D scene coverage model and its deployment method, based on analyzing the common regular polyhedron models used in 3D space coverage, proposed a model based on covering the structure, on the basis of this theory to derive a quantitative relationship between coverage model and node sensing radius, more based on the quantitative relationship between the further calculation of network area remains fully covering the minimum number of nodes are required, the network regional 3D mesh finite mesh node coverage model in accordance with the deployment

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    A Coverage Monitoring algorithm based on Learning Automata for Wireless Sensor Networks

    Full text link
    To cover a set of targets with known locations within an area with limited or prohibited ground access using a wireless sensor network, one approach is to deploy the sensors remotely, from an aircraft. In this approach, the lack of precise sensor placement is compensated by redundant de-ployment of sensor nodes. This redundancy can also be used for extending the lifetime of the network, if a proper scheduling mechanism is available for scheduling the active and sleep times of sensor nodes in such a way that each node is in active mode only if it is required to. In this pa-per, we propose an efficient scheduling method based on learning automata and we called it LAML, in which each node is equipped with a learning automaton, which helps the node to select its proper state (active or sleep), at any given time. To study the performance of the proposed method, computer simulations are conducted. Results of these simulations show that the pro-posed scheduling method can better prolong the lifetime of the network in comparison to similar existing method

    Sensing Coverage Prediction for Wireless Sensor Networks in Shadowed and Multipath Environment

    Get PDF
    Sensing coverage problem in wireless sensor networks is a measure of quality of service (QoS). Coverage refers to how well a sensing field is monitored or tracked by the sensors. Aim of the paper is to have a priori estimate for number of sensors to be deployed in a harsh environment to achieve desired coverage. We have proposed a new sensing channel model that considers combined impact of shadowing fading and multipath effects. A mathematical model for calculating coverage probability in the presence of multipath fading combined with shadowing is derived based on received signal strength (RSS). Further, the coverage probability derivations obtained using Rayleigh fading and lognormal shadowing fading are validated by node deployment using Poisson distribution. A comparative study between our proposed sensing channel model and different existing sensing models for the network coverage has also been presented. Our proposed sensing model is more suitable for realistic environment since it determines the optimum number of sensors required for desirable coverage in fading conditions
    • …
    corecore