9,749 research outputs found

    Scheduling strategies for LTE uplink with flow behaviour analysis

    Get PDF
    Long Term Evolution (LTE) is a cellular technology developed to support\ud diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key\ud mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of two distinct scheduling schemes for LTE uplink (fair fixed assignment and fair work-conserving) taking into account both packet level characteristics and flow level dynamics due to the random user behaviour. For that purpose, we apply a combined analytical/simulation approach which enables fast evaluation of performance measures such as mean flow transfer times manifesting the impact of resource allocation strategies. The results show that the resource allocation strategy has a crucial impact on performance and that some trends are observed only if flow level dynamics are considered

    Analysis of packet scheduling for UMTS EUL - design decisions and performance evaluation

    Get PDF
    The UMTS Enhanced Uplink (EUL) provides higher capacity, increased data rates and smaller latency on the communication link from users towards the network. In this paper we present a performance comparison of three distinct EUL scheduling schemes (one-by-one, partial parallel and full parallel) taking into account both the packet level characteristics and the flow level dynamics due to the (random) user behaviour.\ud Using a very efficient hybrid analytical and simulation approach we analyse the three schemes with respect to performance measures such as mean file transfer time and fairness. In UMTS, a significant part of the system capacity will be used to support non-elastic voice traffic. Hence, part of our investigation is dedicated to the effects that the volume of voice traffic has on the performance of the elastic traffic supported by the EUL. Finally, we evaluate the impact that implementation specifics of a full parallel scheduler has on these measures.\ud \ud Our main conclusion is that our partial parallel scheduler, which is a hybrid between the one-by-one and full parallel, outperforms the other two schedulers in terms of mean flow transfer time, and is less sensitive to volume and nature of voice traffic. However, under certain circumstances, the partial parallel scheduler exhibits a somewhat lower fairness than the alternatives

    OTFS-NOMA: An Efficient Approach for Exploiting Heterogenous User Mobility Profiles

    Get PDF
    This paper considers a challenging communication scenario, in which users have heterogenous mobility profiles, e.g., some users are moving at high speeds and some users are static. A new non-orthogonal multiple-access (NOMA) transmission protocol that incorporates orthogonal time frequency space (OTFS) modulation is proposed. Thereby, users with different mobility profiles are grouped together for the implementation of NOMA. The proposed OTFS-NOMA protocol is shown to be applicable to both uplink and downlink transmission, where sophisticated transmit and receive strategies are developed to remove inter-symbol interference and harvest both multi-path and multi-user diversity. Analytical results demonstrate that both the high-mobility and low-mobility users benefit from the application of OTFS-NOMA. In particular, the use of NOMA allows the spreading of the high-mobility users' signals over a large amount of time-frequency resources, which enhances the OTFS resolution and improves the detection reliability. In addition, OTFS-NOMA ensures that low-mobility users have access to bandwidth resources which in conventional OTFS-orthogonal multiple access (OTFS-NOMA) would be solely occupied by the high-mobility users. Thus, OTFS-NOMA improves the spectral efficiency and reduces latency

    A Framework for Uplink Intercell Interference Modeling with Channel-Based Scheduling

    Full text link
    This paper presents a novel framework for modeling the uplink intercell interference (ICI) in a multiuser cellular network. The proposed framework assists in quantifying the impact of various fading channel models and state-of-the-art scheduling schemes on the uplink ICI. Firstly, we derive a semianalytical expression for the distribution of the location of the scheduled user in a given cell considering a wide range of scheduling schemes. Based on this, we derive the distribution and moment generating function (MGF) of the uplink ICI considering a single interfering cell. Consequently, we determine the MGF of the cumulative ICI observed from all interfering cells and derive explicit MGF expressions for three typical fading models. Finally, we utilize the obtained expressions to evaluate important network performance metrics such as the outage probability, ergodic capacity, and average fairness numerically. Monte-Carlo simulation results are provided to demonstrate the efficacy of the derived analytical expressions.Comment: IEEE Transactions on Wireless Communications, 2013. arXiv admin note: substantial text overlap with arXiv:1206.229
    corecore