149 research outputs found

    Spin Detection, Amplification, and Microwave Squeezing with Kinetic Inductance Parametric Amplifiers

    Full text link
    Superconducting parametric amplifiers operating at microwave frequencies have become an essential component in circuit quantum electrodynamics experiments. They are used to amplify signals at the single-photon level, while adding only the minimum amount of noise required by quantum mechanics. To achieve gain, energy is transferred from a pump to the signal through a non-linear interaction. A common strategy to enhance this process is to place the non-linearity inside a high quality factor resonator, but so far, quantum limited amplifiers of this type have only been demonstrated from designs that utilize Josephson junctions. Here we demonstrate the Kinetic Inductance Parametric Amplifier (KIPA), a three-wave mixing resonant parametric amplifier that exploits the kinetic inductance intrinsic to thin films of disordered superconductors. We then utilize the KIPA for measurements of 209Bi spin ensembles in Si. First, we show that a KIPA can serve simultaneously as a high quality factor resonator for pulsed electron spin resonance measurements and as a low-noise parametric amplifier. Using this dual-functionality, we enhance the signal to noise ratio of our measurements by more than a factor of seven and ultimately achieve a measurement sensitivity of 2.4 x 10^3 spins. Then we show that pushed to the high-gain limit, KIPAs can serve as a `click'-detector for microwave wave packets by utilizing a hysteretic transition to a self-oscillating state. We calibrate the detector's sensitivity to be 3.7 zJ and then apply it to measurements of electron spin resonance. Finally, we demonstrate the suitability of the KIPA for generating squeezed vacuum states. Using a cryogenic noise source, we first confirm the KIPAs in our experiment to be quantum limited amplifiers. Then, using two KIPAs arranged in series, we make direct measurements of vacuum noise squeezing, where we generate itinerant squeezed states with minimum uncertainty more than 7 dB below the standard quantum limit. High quality factor resonators have also recently been used to achieve strong coupling between the spins of single electrons in gate-defined quantum dots and microwave photons. We present our efforts to achieve the equivalent goal for the 31P flip-flop qubit. In doing so, we confirm previous predictions that the superconducting material MoRe would produce magnetic field-resilient resonators and demonstrate that it has kinetic inductance equivalent to the popular material NbTiN

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.United States Department of Energy (DOE) DE-AC02-05CH11231government of Japan (Ministry of Education, Culture, Sports, Science and Technology)Istituto Nazionale di Fisica Nucleare (INFN)Physical Society of Japan (JPS)European Laboratory for Particle Physics (CERN)United States Department of Energy (DOE

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    The Science and Technology of Particle Accelerators

    Get PDF
    The Science and Technology of Particle Accelerators provides an accessible introduction to the field, and is suitable for advanced undergraduates, graduate students, and academics, as well as professionals in national laboratories and facilities, industry, and medicine who are designing or using particle accelerators. Providing integrated coverage of accelerator science and technology, this book presents the fundamental concepts alongside detailed engineering discussions and extensive practical guidance, including many numerical examples. For each topic, the authors provide a description of the physical principles, a guide to the practical application of those principles, and a discussion of how to design the components that allow the application to be realised. Features: Written by an interdisciplinary and highly respected team of physicists and engineers from the Cockcroft Institute of Accelerator Science and Technology in the UK Accessible style, with many numerical examples Contains an extensive set of problems, with fully worked solutions available Rob Appleby is an academic member of staff at the University of Manchester, and Chief Examiner in the Department of Physics and Astronomy. Graeme Burt is an academic member of staff at the University of Lancaster, and previous Director of Education at the Cockcroft Institute. James Clarke is head of Science Division in the Accelerator Science and Technology Centre at STFC Daresbury Laboratory. Hywel Owen is an academic member of staff at the University of Manchester, and Director of Education at the Cockcroft Institute. All authors are researchers within the Cockcroft Institute of Accelerator Science and Technology and have extensive experience in the design and construction of particle accelerators, including particle colliders, synchrotron radiation sources, free electron lasers, and medical and industrial accelerator systems

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor

    Analysis of Data Remanence and Power-up States of SRAM Cells in Embedded Systems

    Get PDF
    Contrary to popular assumption, Static RAM (SRAM), the main memory in most modern microcontrollers, temporarily retains its contents after power is lost. Instead of an immediate erase, SRAM data progressively degrades over a period (from milliseconds to several minutes at low temperatures) when power is cut o . This e ect, known as data remanence, is exploited by cold boot attacks, which are hardware-level threads that target encryption keys and other sensitive data stored in SRAM. On power-up, SRAM cells spontaneously set to unpredictable 0 or 1-states. These initial SRAM values describe a unique binary pattern that reveals a physical ngerprint of the device. Physical Unclonable Functions (PUFs) take advantage of this inherent process to obtain cryptographic keys or identi ers directly out of the chips, o ering a cost-e ective solution and a more secure alternative to conventional key-storage based on non-volatile memories. Moreover, SRAM power-up states may also be used as a source of randomness for True Random Number Generators (TRNGs). This Master's Thesis addresses these two security-related topics regarding SRAM modules in embedded systems. First, this project aims to investigate the vulnerability against cold-boot attacks of modern low-power devices, which is directly related to their low-temperature SRAM data remanence characteristics. Second, to assess the feasibility of implementing a PUF and a TRNG from SRAM power-up states. Both analyses consider the impact of temperature variations and are particularized for SRAM modules embedded in PIC18F4520 microcontrollers. Two sets of experiments are performed to generate the data required by both studies. The experimental setup and methodology are entirely designed and implemented within this project. The control of the execution of the experiments and the post-processing of the data are performed using MATLAB. Then, a set of metrics for characterizing SRAM data remanence are de ned, and a general methodology for SRAM-PUF and TRNG evaluation is established. The characterization of SRAM data remanence reveals that unprotected PIC18F4520 microcontrollers could be vulnerable to cold-boot attacks at temperatures below 0 C and that similar behaviour could be expected from same-range devices. The evaluation of the SRAM power-up states characteristics indicates that implementing an SRAM-PUF in PIC18F4520 microcontrollers could be feasible. In contrast, insu cient randomness appears to be contained in PIC18F4520 SRAM power-up states for a TRNG implementation to be viable in practic

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app
    corecore