4 research outputs found

    Impact of load ramping on power transformer dissolved gas analysis

    Get PDF
    Dissolved gas in oil analysis (DGA) is one of the most reliable condition monitoring techniques, which is currently used by the industry to detect incipient faults within the power transformers. While the technique is well matured since the development of various offline and online measurement techniques along with various interpretation methods, no much attention was given so far to the oil sampling time and its correlation with the transformer loading. A power transformer loading is subject to continuous daily and seasonal variations, which is expected to increase with the increased penetration level of renewable energy sources of intermittent characteristics, such as photovoltaic (PV) and wind energy into the current electricity grids. Generating unit transformers also undergoes similar loading variations to follow the demand, particularly in the new electricity market. As such, the insulation system within the power transformers is expected to exhibit operating temperature variations due to the continuous ramping up and down of the generation and load. If the oil is sampled for the DGA measurement during such ramping cycles, results will not be accurate, and a fault may be reported due to a gas evolution resulting from such temporarily loading variation. This paper is aimed at correlating the generation and load ramping with the DGA measurements through extensive experimental analyses. The results reveal a strong correlation between the sampling time and the generation/load ramping. The experimental results show the effect of load variations on the gas generation and demonstrate the vulnerabilities of misinterpretation of transformer faults resulting from temporary gas evolution. To achieve accurate DGA, transformer loading profile during oil sampling for the DGA measurement should be available. Based on the initial investigation in this paper, the more accurate DGA results can be achieved after a ramping down cycle of the load. This sampling time could be defined as an optimum oil sampling time for transformer DGA

    Discernment of transformer oil stray gassing anomalies using machine learning classification techniques

    Get PDF
    DATA AVAILABILITY : The data that support the findings of this study are available from the corresponding author upon reasonable request.This work examines the application of machine learning (ML) algorithms to evaluate dissolved gas analysis (DGA) data to quickly identify incipient faults in oil-immersed transformers (OITs). Transformers are pivotal equipment in the transmission and distribution of electrical power. The failure of a particular unit during service may interrupt a massive number of consumers and disrupt commercial activities in that area. Therefore, several monitoring techniques are proposed to ensure that the unit maintains an adequate level of functionality in addition to an extended useful lifespan. DGA is a technique commonly employed for monitoring the state of OITs. The understanding of DGA samples is conversely unsatisfactory from the perspective of evaluating incipient faults and relies mainly on the proficiency of test engineers. In the current work, a multi-classification model that is centered on ML algorithms is demonstrated to have a logical, precise, and perfect understanding of DGA. The proposed model is used to analyze 138 transformer oil (TO) samples that exhibited different stray gassing characteristics in various South African substations. The proposed model combines the design of four ML classifiers and enhances diagnosis accuracy and trust between the transformer manufacturer and power utility. Furthermore, case reports on transformer failure analysis using the proposed model, IEC 60599:2022, and Eskom (Specification—Ref: 240-75661431) standards are presented. In addition, a comparison analysis is conducted in this work against the conventional DGA approaches to validate the proposed model. The proposed model demonstrates the highest degree of accuracy of 87.7%, which was produced by Bagged Trees, followed by Fine KNN with 86.2%, and the third in rank is Quadratic SVM with 84.1%.https://www.nature.com/srephj2024Electrical, Electronic and Computer EngineeringSDG-09: Industry, innovation and infrastructur

    Impact of Load Ramping on Power Transformer Dissolved Gas Analysis

    Get PDF
    Dissolved gas in oil analysis (DGA) is one of the most reliable condition monitoring techniques, which is currently used by the industry to detect incipient faults within the power transformers. While the technique is well matured since the development of various offline and online measurement techniques along with various interpretation methods, no much attention was given so far to the oil sampling time and its correlation with the transformer loading. A power transformer loading is subject to continuous daily and seasonal variations, which is expected to increase with the increased penetration level of renewable energy sources of intermittent characteristics, such as photovoltaic (PV) and wind energy into the current electricity grids. Generating unit transformers also undergoes similar loading variations to follow the demand, particularly in the new electricity market. As such, the insulation system within the power transformers is expected to exhibit operating temperature variations due to the continuous ramping up and down of the generation and load. If the oil is sampled for the DGA measurement during such ramping cycles, results will not be accurate, and a fault may be reported due to a gas evolution resulting from such temporarily loading variation. This paper is aimed at correlating the generation and load ramping with the DGA measurements through extensive experimental analyses. The results reveal a strong correlation between the sampling time and the generation/load ramping. The experimental results show the effect of load variations on the gas generation and demonstrate the vulnerabilities of misinterpretation of transformer faults resulting from temporary gas evolution. To achieve accurate DGA, transformer loading profile during oil sampling for the DGA measurement should be available. Based on the initial investigation in this paper, the more accurate DGA results can be achieved after a ramping down cycle of the load. This sampling time could be defined as an optimum oil sampling time for transformer DGA

    Real-time Condition Monitoring and Asset Management of Oil- Immersed Power Transformers

    Get PDF
    This research pioneers a comprehensive asset management methodology utilizing solely online dissolved gas analysis. Integrating advanced AI algorithms, the model was trained and rigorously tested on real-world data, demonstrating its efficacy in optimizing asset performance and reliability
    corecore