15,567 research outputs found

    A Systemic Receptor Network Triggered by Human cytomegalovirus Entry

    Get PDF
    Virus entry is a multistep process that triggers a variety of cellular pathways interconnecting into a complex network, yet the molecular complexity of this network remains largely unsolved. Here, by employing systems biology approach, we reveal a systemic virus-entry network initiated by human cytomegalovirus (HCMV), a widespread opportunistic pathogen. This network contains all known interactions and functional modules (i.e. groups of proteins) coordinately responding to HCMV entry. The number of both genes and functional modules activated in this network dramatically declines shortly, within 25 min post-infection. While modules annotated as receptor system, ion transport, and immune response are continuously activated during the entire process of HCMV entry, those for cell adhesion and skeletal movement are specifically activated during viral early attachment, and those for immune response during virus entry. HCMV entry requires a complex receptor network involving different cellular components, comprising not only cell surface receptors, but also pathway components in signal transduction, skeletal development, immune response, endocytosis, ion transport, macromolecule metabolism and chromatin remodeling. Interestingly, genes that function in chromatin remodeling are the most abundant in this receptor system, suggesting that global modulation of transcriptions is one of the most important events in HCMV entry. Results of in silico knock out further reveal that this entire receptor network is primarily controlled by multiple elements, such as EGFR (Epidermal Growth Factor) and SLC10A1 (sodium/bile acid cotransporter family, member 1). Thus, our results demonstrate that a complex systemic network, in which components coordinating efficiently in time and space contributes to virus entry.Comment: 26 page

    A Knowledge-based Integrative Modeling Approach for <em>In-Silico</em> Identification of Mechanistic Targets in Neurodegeneration with Focus on Alzheimer’s Disease

    Get PDF
    Dementia is the progressive decline in cognitive function due to damage or disease in the body beyond what might be expected from normal aging. Based on neuropathological and clinical criteria, dementia includes a spectrum of diseases, namely Alzheimer's dementia, Parkinson's dementia, Lewy Body disease, Alzheimer's dementia with Parkinson's, Pick's disease, Semantic dementia, and large and small vessel disease. It is thought that these disorders result from a combination of genetic and environmental risk factors. Despite accumulating knowledge that has been gained about pathophysiological and clinical characteristics of the disease, no coherent and integrative picture of molecular mechanisms underlying neurodegeneration in Alzheimer’s disease is available. Existing drugs only offer symptomatic relief to the patients and lack any efficient disease-modifying effects. The present research proposes a knowledge-based rationale towards integrative modeling of disease mechanism for identifying potential candidate targets and biomarkers in Alzheimer’s disease. Integrative disease modeling is an emerging knowledge-based paradigm in translational research that exploits the power of computational methods to collect, store, integrate, model and interpret accumulated disease information across different biological scales from molecules to phenotypes. It prepares the ground for transitioning from ‘descriptive’ to “mechanistic” representation of disease processes. The proposed approach was used to introduce an integrative framework, which integrates, on one hand, extracted knowledge from the literature using semantically supported text-mining technologies and, on the other hand, primary experimental data such as gene/protein expression or imaging readouts. The aim of such a hybrid integrative modeling approach was not only to provide a consolidated systems view on the disease mechanism as a whole but also to increase specificity and sensitivity of the mechanistic model by providing disease-specific context. This approach was successfully used for correlating clinical manifestations of the disease to their corresponding molecular events and led to the identification and modeling of three important mechanistic components underlying Alzheimer’s dementia, namely the CNS, the immune system and the endocrine components. These models were validated using a novel in-silico validation method, namely biomarker-guided pathway analysis and a pathway-based target identification approach was introduced, which resulted in the identification of the MAPK signaling pathway as a potential candidate target at the crossroad of the triad components underlying disease mechanism in Alzheimer’s dementia

    A comprehensive network and pathway analysis of candidate genes in major depressive disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous genetic and genomic datasets related to complex diseases have been made available during the last decade. It is now a great challenge to assess such heterogeneous datasets to prioritize disease genes and perform follow up functional analysis and validation. Among complex disease studies, psychiatric disorders such as major depressive disorder (MDD) are especially in need of robust integrative analysis because these diseases are more complex than others, with weak genetic factors at various levels, including genetic markers, transcription (gene expression), epigenetics (methylation), protein, pathways and networks.</p> <p>Results</p> <p>In this study, we proposed a comprehensive analysis framework at the systems level and demonstrated it in MDD using a set of candidate genes that have recently been prioritized based on multiple lines of evidence including association, linkage, gene expression (both human and animal studies), regulatory pathway, and literature search. In the network analysis, we explored the topological characteristics of these genes in the context of the human interactome and compared them with two other complex diseases. The network topological features indicated that MDD is similar to schizophrenia compared to cancer. In the functional analysis, we performed the gene set enrichment analysis for both Gene Ontology categories and canonical pathways. Moreover, we proposed a unique pathway crosstalk approach to examine the dynamic interactions among biological pathways. Our pathway enrichment and crosstalk analyses revealed two unique pathway interaction modules that were significantly enriched with MDD genes. These two modules are neuro-transmission and immune system related, supporting the neuropathology hypothesis of MDD. Finally, we constructed a MDD-specific subnetwork, which recruited novel candidate genes with association signals from a major MDD GWAS dataset.</p> <p>Conclusions</p> <p>This study is the first systematic network and pathway analysis of candidate genes in MDD, providing abundant important information about gene interaction and regulation in a major psychiatric disease. The results suggest potential functional components underlying the molecular mechanisms of MDD and, thus, facilitate generation of novel hypotheses in this disease. The systems biology based strategy in this study can be applied to many other complex diseases.</p

    Protein-protein interactions: network analysis and applications in drug discovery

    Get PDF
    Physical interactions among proteins constitute the backbone of cellular function, making them an attractive source of therapeutic targets. Although the challenges associated with targeting protein-protein interactions (PPIs) -in particular with small molecules are considerable, a growing number of functional PPI modulators is being reported and clinically evaluated. An essential starting point for PPI inhibitor screening or design projects is the generation of a detailed map of the human interactome and the interactions between human and pathogen proteins. Different routes to produce these biological networks are being combined, including literature curation and computational methods. Experimental approaches to map PPIs mainly rely on the yeast two-hybrid (Y2H) technology, which have recently shown to produce reliable protein networks. However, other genetic and biochemical methods will be essential to increase both coverage and resolution of current protein networks in order to increase their utility towards the identification of novel disease-related proteins and PPIs, and their potential use as therapeutic targets

    Knowledge Discovery Through Large-Scale Literature-Mining of Biological Text-Data

    Get PDF
    The aim of this study is to develop scalable and efficient literature-mining framework for knowledge discovery in the field of medical and biological sciences. Using this scalable framework, customized disease-disease interaction network can be constructed. Features of the proposed network that differentiate it from existing networks are its 1) flexibility in the level of abstraction, 2) broad coverage, and 3) domain specificity. Empirical results for two neurological diseases have shown the utility of the proposed framework. The second goal of this study is to design and implement a bottom-up information retrieval approach to facilitate literature-mining in the specialized field of medical genetics. Experimental results are being corroborated at the moment

    Integrative Modeling of Transcriptional Regulation in Response to Autoimmune Desease Therapies

    Get PDF
    Die rheumatoide Arthritis (RA) und die Multiple Sklerose (MS) werden allgemein als Autoimmunkrankheiten eingestuft. Zur Behandlung dieser Krankheiten werden immunmodulatorische Medikamente eingesetzt, etwa TNF-alpha-Blocker (z.B. Etanercept) im Falle der RA und IFN-beta-Präparate (z.B. Betaferon und Avonex) im Falle der MS. Bis heute sind die molekularen Mechanismen dieser Therapien weitestgehend unbekannt. Zudem ist ihre Wirksamkeit und Verträglichkeit bei einigen Patienten unzureichend. In dieser Arbeit wurde die transkriptionelle Antwort im Blut von Patienten auf jede dieser drei Therapien untersucht, um die Wirkungsweise dieser Medikamente besser zu verstehen. Dabei wurden Methoden der Netzwerkinferenz eingesetzt, mit dem Ziel, die genregulatorischen Netzwerke (GRNs) der in ihrer Expression veränderten Gene zu rekonstruieren. Ausgangspunkt dieser Analysen war jeweils ein Genexpressions- Datensatz. Daraus wurden zunächst Gene gefiltert, die nach Therapiebeginn hoch- oder herunterreguliert sind. Anschließend wurden die genregulatorischen Regionen dieser Gene auf Transkriptionsfaktor-Bindestellen (TFBS) analysiert. Um schließlich GRN-Modelle abzuleiten, wurde ein neuer Netzwerkinferenz-Algorithmus (TILAR) verwendet. TILAR unterscheidet zwischen Genen und TF und beschreibt die regulatorischen Effekte zwischen diesen durch ein lineares Gleichungssystem. TILAR erlaubt dabei Vorwissen über Gen-TF- und TF-Gen-Interaktionen einzubeziehen. Im Ergebnis wurden komplexe Netzwerkstrukturen rekonstruiert, welche die regulatorischen Beziehungen zwischen den Genen beschreiben, die im Verlauf der Therapien differentiell exprimiert sind. Für die Etanercept-Therapie wurde ein Teilnetz gefunden, das Gene enthält, die niedrigere Expressionslevel bei RA-Patienten zeigen, die sehr gut auf das Medikament ansprechen. Die Analyse von GRNs kann somit zu einem besseren Verständnis Therapie-assoziierter Prozesse beitragen und transkriptionelle Unterschiede zwischen Patienten aufzeigen

    Beyond the ‘other’ as constitutive outside: : The politics of immunity in Roberto Esposito and Niklas Luhmann

    Get PDF
    This article re-conceptualises the ‘constitutive outside’ through Roberto Esposito’s theory of immunity to detach it from Laclau and Mouffe’s political antagonism. It identifies Esposito’s thought as an innovative epistemological perspective to dissolve post-ontological political theories of community from the intertwinement with a foundational self/other dialectic. Esposito shows how a community can sustain its relations through introversive immunisation against a primarily undefined outside. But it is argued that his theory of immunity slips back to a vitalist depth ontology which ultimately de-politicises the construction of the communal outside. This article draws on Niklas Luhmann’s immunity theory to resituate immunisation in the political production of social connectivity. Following Luhmann, politics relies on immunisation through contradictions to reproduce its functional role as a decision-making institution, but is at the same time constantly exposed to potential rupture through the political openness immunity introduces. Through Esposito and Luhmann, this article identifies the relationship between a social inside and its outside as open-ended and secondary to an introversive process of socio-political self-differentiation. It can involve, but does epistemologically necessitate, the construction of an external otherPeer reviewedFinal Accepted Versio

    An ontological framework for the formal representation and management of human stress knowledge

    Get PDF
    There is a great deal of information on the topic of human stress which is embedded within numerous papers across various databases. However, this information is stored, retrieved, and used often discretely and dispersedly. As a result, discovery and identification of the links and interrelatedness between different aspects of knowledge on stress is difficult. This restricts the effective search and retrieval of desired information. There is a need to organize this knowledge under a unifying framework, linking and analysing it in mutual combinations so that we can obtain an inclusive view of the related phenomena and new knowledge can emerge. Furthermore, there is a need to establish evidence-based and evolving relationships between the ontology concepts.Previous efforts to classify and organize stress-related phenomena have not been sufficiently inclusive and none of them has considered the use of ontology as an effective facilitating tool for the abovementioned issues.There have also been some research works on the evolution and refinement of ontology concepts and relationships. However, these fail to provide any proposals for an automatic and systematic methodology with the capacity to establish evidence-based/evolving ontology relationships.In response to these needs, we have developed the Human Stress Ontology (HSO), a formal framework which specifies, organizes, and represents the domain knowledge of human stress. This machine-readable knowledge model is likely to help researchers and clinicians find theoretical relationships between different concepts, resulting in a better understanding of the human stress domain and its related areas. The HSO is formalized using OWL language and Protégé tool.With respect to the evolution and evidentiality of ontology relationships in the HSO and other scientific ontologies, we have proposed the Evidence-Based Evolving Ontology (EBEO), a methodology for the refinement and evolution of ontology relationships based on the evidence gleaned from scientific literature. The EBEO is based on the implementation of a Fuzzy Inference System (FIS).Our evaluation results showed that almost all stress-related concepts of the sample articles can be placed under one or more category of the HSO. Nevertheless, there were a number of limitations in this work which need to be addressed in future undertakings.The developed ontology has the potential to be used for different data integration and interoperation purposes in the domain of human stress. It can also be regarded as a foundation for the future development of semantic search engines in the stress domain
    corecore