1,437 research outputs found

    Immersive 4D Interactive Visualization of Large-Scale Simulations

    Get PDF
    In dense clusters a bewildering variety of interactions between stars can be observed, ranging from simple encounters to collisions and other mass-transfer encounters. With faster and special-purpose computers like GRAPE, the amount of data per simulation is now exceeding 1TB. Visualization of such data has now become a complex 4D data-mining problem, combining space and time, and finding interesting events in these large datasets. We have recently starting using the virtual reality simulator, installed in the Hayden Planetarium in the American Museum for Natural History, to tackle some of these problem. This work (http://www.astro.umd.edu/nemo/amnh/) reports on our first ``observations'', modifications needed for our specific experiments, and perhaps field ideas for other fields in science which can benefit from such immersion. We also discuss how our normal analysis programs can be interfaced with this kind of visualization.Comment: 4 pages, 1 figure, ADASS-X conference proceeding

    TempoCave: Visualizing Dynamic Connectome Datasets to Support Cognitive Behavioral Therapy

    Get PDF
    We introduce TempoCave, a novel visualization application for analyzing dynamic brain networks, or connectomes. TempoCave provides a range of functionality to explore metrics related to the activity patterns and modular affiliations of different regions in the brain. These patterns are calculated by processing raw data retrieved functional magnetic resonance imaging (fMRI) scans, which creates a network of weighted edges between each brain region, where the weight indicates how likely these regions are to activate synchronously. In particular, we support the analysis needs of clinical psychologists, who examine these modular affiliations and weighted edges and their temporal dynamics, utilizing them to understand relationships between neurological disorders and brain activity, which could have a significant impact on the way in which patients are diagnosed and treated. We summarize the core functionality of TempoCave, which supports a range of comparative tasks, and runs both in a desktop mode and in an immersive mode. Furthermore, we present a real-world use case that analyzes pre- and post-treatment connectome datasets from 27 subjects in a clinical study investigating the use of cognitive behavior therapy to treat major depression disorder, indicating that TempoCave can provide new insight into the dynamic behavior of the human brain

    Immersive Visualization in Biomedical Computational Fluid Dynamics and Didactic Teaching and Learning

    Get PDF
    Virtual reality (VR) can stimulate active learning, critical thinking, decision making and improved performance. It requires a medium to show virtual content, which is called a virtual environment (VE). The MARquette Visualization Lab (MARVL) is an example of a VE. Robust processes and workflows that allow for the creation of content for use within MARVL further increases the userbase for this valuable resource. A workflow was created to display biomedical computational fluid dynamics (CFD) and complementary data in a wide range of VE’s. This allows a researcher to study the simulation in its natural three-dimensional (3D) morphology. In addition, it is an exciting way to extract more information from CFD results by taking advantage of improved depth cues, a larger display canvas, custom interactivity, and an immersive approach that surrounds the researcher. The CFD to VR workflow was designed to be basic enough for a novice user. It is also used as a tool to foster collaboration between engineers and clinicians. The workflow aimed to support results from common CFD software packages and across clinical research areas. ParaView, Blender and Unity were used in the workflow to take standard CFD files and process them for viewing in VR. Designated scripts were written to automate the steps implemented in each software package. The workflow was successfully completed across multiple biomedical vessels, scales and applications including: the aorta with application to congenital cardiovascular disease, the Circle of Willis with respect to cerebral aneurysms, and the airway for surgical treatment planning. The workflow was completed by novice users in approximately an hour. Bringing VR further into didactic teaching within academia allows students to be fully immersed in their respective subject matter, thereby increasing the students’ sense of presence, understanding and enthusiasm. MARVL is a space for collaborative learning that also offers an immersive, virtual experience. A workflow was created to view PowerPoint presentations in 3D using MARVL. A resulting Immersive PowerPoint workflow used PowerPoint, Unity and other open-source software packages to display the PowerPoint presentations in 3D. The Immersive PowerPoint workflow can be completed in under thirty minutes

    The Analysis of design and manufacturing tasks using haptic and immersive VR - Some case studies

    Get PDF
    The use of virtual reality in interactive design and manufacture has been researched extensively but the practical application of this technology in industry is still very much in its infancy. This is surprising as one would have expected that, after some 30 years of research commercial applications of interactive design or manufacturing planning and analysis would be widespread throughout the product design domain. One of the major but less well known advantages of VR technology is that logging the user gives a great deal of rich data which can be used to automatically generate designs or manufacturing instructions, analyse design and manufacturing tasks, map engineering processes and, tentatively, acquire expert knowledge. The authors feel that the benefits of VR in these areas have not been fully disseminated to the wider industrial community and - with the advent of cheaper PC-based VR solutions - perhaps a wider appreciation of the capabilities of this type of technology may encourage companies to adopt VR solutions for some of their product design processes. With this in mind, this paper will describe in detail applications of haptics in assembly demonstrating how user task logging can lead to the analysis of design and manufacturing tasks at a level of detail not previously possible as well as giving usable engineering outputs. The haptic 3D VR study involves the use of a Phantom and 3D system to analyse and compare this technology against real-world user performance. This work demonstrates that the detailed logging of tasks in a virtual environment gives considerable potential for understanding how virtual tasks can be mapped onto their real world equivalent as well as showing how haptic process plans can be generated in a similar manner to the conduit design and assembly planning HMD VR tool reported in PART A. The paper concludes with a view as to how the authors feel that the use of VR systems in product design and manufacturing should evolve in order to enable the industrial adoption of this technology in the future

    Dynamic Volume Rendering of Functional Medical Data on Dissimilar Hardware Platforms

    Get PDF
    In the last 30 years, medical imaging has become one of the most used diagnostic tools in the medical profession. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) technologies have become widely adopted because of their ability to capture the human body in a non-invasive manner. A volumetric dataset is a series of orthogonal 2D slices captured at a regular interval, typically along the axis of the body from the head to the feet. Volume rendering is a computer graphics technique that allows volumetric data to be visualized and manipulated as a single 3D object. Iso-surface rendering, image splatting, shear warp, texture slicing, and raycasting are volume rendering methods, each with associated advantages and disadvantages. Raycasting is widely regarded as the highest quality renderer of these methods. Originally, CT and MRI hardware was limited to providing a single 3D scan of the human body. The technology has improved to allow a set of scans capable of capturing anatomical movements like a beating heart. The capturing of anatomical data over time is referred to as functional imaging. Functional MRI (fMRI) is used to capture changes in the human body over time. While fMRI’s can be used to capture any anatomical data over time, one of the more common uses of fMRI is to capture brain activity. The fMRI scanning process is typically broken up into a time consuming high resolution anatomical scan and a series of quick low resolution scans capturing activity. The low resolution activity data is mapped onto the high resolution anatomical data to show changes over time. Academic research has advanced volume rendering and specifically fMRI volume rendering. Unfortunately, academic research is typically a one-off solution to a singular medical case or set of data, causing any advances to be problem specific as opposed to a general capability. Additionally, academic volume renderers are often designed to work on a specific device and operating system under controlled conditions. This prevents volume rendering from being used across the ever expanding number of different computing devices, such as desktops, laptops, immersive virtual reality systems, and mobile computers like phones or tablets. This research will investigate the feasibility of creating a generic software capability to perform real-time 4D volume rendering, via raycasting, on desktop, mobile, and immersive virtual reality platforms. Implementing a GPU-based 4D volume raycasting method for mobile devices will harness the power of the increasing number of mobile computational devices being used by medical professionals. Developing support for immersive virtual reality can enhance medical professionals’ interpretation of 3D physiology with the additional depth information provided by stereoscopic 3D. The results of this research will help expand the use of 4D volume rendering beyond the traditional desktop computer in the medical field. Developing the same 4D volume rendering capabilities across dissimilar platforms has many challenges. Each platform relies on their own coding languages, libraries, and hardware support. There are tradeoffs between using languages and libraries native to each platform and using a generic cross-platform system, such as a game engine. Native libraries will generally be more efficient during application run-time, but they require different coding implementations for each platform. The decision was made to use platform native languages and libraries in this research, whenever practical, in an attempt to achieve the best possible frame rates. 4D volume raycasting provides unique challenges independent of the platform. Specifically, fMRI data loading, volume animation, and multiple volume rendering. Additionally, real-time raycasting has never been successfully performed on a mobile device. Previous research relied on less computationally expensive methods, such as orthogonal texture slicing, to achieve real-time frame rates. These challenges will be addressed as the contributions of this research. The first contribution was exploring the feasibility of generic functional data input across desktop, mobile, and immersive virtual reality. To visualize 4D fMRI data it was necessary to build in the capability to read Neuroimaging Informatics Technology Initiative (NIfTI) files. The NIfTI format was designed to overcome limitations of 3D file formats like DICOM and store functional imagery with a single high-resolution anatomical scan and a set of low-resolution anatomical scans. Allowing input of the NIfTI binary data required creating custom C++ routines, as no object oriented APIs freely available for use existed. The NIfTI input code was built using C++ and the C++ Standard Library to be both light weight and cross-platform. Multi-volume rendering is another challenge of fMRI data visualization and a contribution of this work. fMRI data is typically broken into a single high-resolution anatomical volume and a series of low-resolution volumes that capture anatomical changes. Visualizing two volumes at the same time is known as multi-volume visualization. Therefore, the ability to correctly align and scale the volumes relative to each other was necessary. It was also necessary to develop a compositing method to combine data from both volumes into a single cohesive representation. Three prototype applications were built for the different platforms to test the feasibility of 4D volume raycasting. One each for desktop, mobile, and virtual reality. Although the backend implementations were required to be different between the three platforms, the raycasting functionality and features were identical. Therefore, the same fMRI dataset resulted in the same 3D visualization independent of the platform itself. Each platform uses the same NIfTI data loader and provides support for dataset coloring and windowing (tissue density manipulation). The fMRI data can be viewed changing over time by either animation through the time steps, like a movie, or using an interface slider to “scrub” through the different time steps of the data. The prototype applications data load times and frame rates were tested to determine if they achieved the real-time interaction goal. Real-time interaction was defined by achieving 10 frames per second (fps) or better, based on the work of Miller [1]. The desktop version was evaluated on a 2013 MacBook Pro running OS X 10.12 with a 2.6 GHz Intel Core i7 processor, 16 GB of RAM, and a NVIDIA GeForce GT 750M graphics card. The immersive application was tested in the C6 CAVE™, a 96 graphics node computer cluster comprised of NVIDIA Quadro 6000 graphics cards running Red Hat Enterprise Linux. The mobile application was evaluated on a 2016 9.7” iPad Pro running iOS 9.3.4. The iPad had a 64-bit Apple A9X dual core processor with 2 GB of built in memory. Two different fMRI brain activity datasets with different voxel resolutions were used as test datasets. Datasets were tested using both the 3D structural data, the 4D functional data, and a combination of the two. Frame rates for the desktop implementation were consistently above 10 fps, indicating that real-time 4D volume raycasting is possible on desktop hardware. The mobile and virtual reality platforms were able to perform real-time 3D volume raycasting consistently. This is a marked improvement for 3D mobile volume raycasting that was previously only able to achieve under one frame per second [2]. Both VR and mobile platforms were able to raycast the 4D only data at real-time frame rates, but did not consistently meet 10 fps when rendering both the 3D structural and 4D functional data simultaneously. However, 7 frames per second was the lowest frame rate recorded, indicating that hardware advances will allow consistent real-time raycasting of 4D fMRI data in the near future

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    VGC 2023 - Unveiling the dynamic Earth with digital methods: 5th Virtual Geoscience Conference: Book of Abstracts

    Get PDF
    Conference proceedings of the 5th Virtual Geoscience Conference, 21-22 September 2023, held in Dresden. The VGC is a multidisciplinary forum for researchers in geoscience, geomatics and related disciplines to share their latest developments and applications.:Short Courses 9 Workshops Stream 1 10 Workshop Stream 2 11 Workshop Stream 3 12 Session 1 – Point Cloud Processing: Workflows, Geometry & Semantics 14 Session 2 – Visualisation, communication & Teaching 27 Session 3 – Applying Machine Learning in Geosciences 36 Session 4 – Digital Outcrop Characterisation & Analysis 49 Session 5 – Airborne & Remote Mapping 58 Session 6 – Recent Developments in Geomorphic Process and Hazard Monitoring 69 Session 7 – Applications in Hydrology & Ecology 82 Poster Contributions 9
    • …
    corecore