125 research outputs found

    Generating Personas for Games with Multimodal Adversarial Imitation Learning

    Full text link
    Reinforcement learning has been widely successful in producing agents capable of playing games at a human level. However, this requires complex reward engineering, and the agent's resulting policy is often unpredictable. Going beyond reinforcement learning is necessary to model a wide range of human playstyles, which can be difficult to represent with a reward function. This paper presents a novel imitation learning approach to generate multiple persona policies for playtesting. Multimodal Generative Adversarial Imitation Learning (MultiGAIL) uses an auxiliary input parameter to learn distinct personas using a single-agent model. MultiGAIL is based on generative adversarial imitation learning and uses multiple discriminators as reward models, inferring the environment reward by comparing the agent and distinct expert policies. The reward from each discriminator is weighted according to the auxiliary input. Our experimental analysis demonstrates the effectiveness of our technique in two environments with continuous and discrete action spaces.Comment: Published in CoG 202

    Toward evolutionary and developmental intelligence

    Get PDF
    Given the phenomenal advances in artificial intelligence in specific domains like visual object recognition and game playing by deep learning, expectations are rising for building artificial general intelligence (AGI) that can flexibly find solutions in unknown task domains. One approach to AGI is to set up a variety of tasks and design AI agents that perform well in many of them, including those the agent faces for the first time. One caveat for such an approach is that the best performing agent may be just a collection of domain-specific AI agents switched for a given domain. Here we propose an alternative approach of focusing on the process of acquisition of intelligence through active interactions in an environment. We call this approach evolutionary and developmental intelligence (EDI). We first review the current status of artificial intelligence, brain-inspired computing and developmental robotics and define the conceptual framework of EDI. We then explore how we can integrate advances in neuroscience, machine learning, and robotics to construct EDI systems and how building such systems can help us understand animal and human intelligence

    Boosting Reinforcement Learning and Planning with Demonstrations: A Survey

    Full text link
    Although reinforcement learning has seen tremendous success recently, this kind of trial-and-error learning can be impractical or inefficient in complex environments. The use of demonstrations, on the other hand, enables agents to benefit from expert knowledge rather than having to discover the best action to take through exploration. In this survey, we discuss the advantages of using demonstrations in sequential decision making, various ways to apply demonstrations in learning-based decision making paradigms (for example, reinforcement learning and planning in the learned models), and how to collect the demonstrations in various scenarios. Additionally, we exemplify a practical pipeline for generating and utilizing demonstrations in the recently proposed ManiSkill robot learning benchmark
    • …
    corecore