1,082,375 research outputs found
Recommended from our members
Cost-Effectiveness of Advanced Imaging Technologies in the Presurgical Workup of Epilepsy.
The cost-effectiveness and benefit of many diagnostic tests used in the presurgical evaluation for persons with epilepsy is for the most part uncertain as is their influence on decision-making. The options we have at our disposal are ever increasing. Advanced imaging modalities aim to improve surgical candidacy by helping us better define the epileptogenic zone and optimize surgical planning. However, judicious use is important. Randomized controlled trials delineating which mode of investigation is superior are lacking. Presurgical tests do have incremental value by increasing surgical candidacy and refining surgical planning. The yield of additional imaging will increase with complex localization. However, every case must be tailored by hypothesis, cost, and accessibility. Future studies using a quantitative cost-benefit framework are needed to determine the cost-effectiveness of advanced diagnostic tests (beyond magnetic resonance imaging) in the presurgical evaluation of those with epilepsy
Imaging for endoscopic sinus surgery in adults
Computerized tomography (CT) offers the gold standard in terms of imaging the extent of disease and the fine detailed anatomy, both pre-requisites to the safe practice of endoscopic sinus surgery. Neither plain X-rays nor magnetic resonance imaging (MRI) offer optimal information in this respect. A variety of protocols minimizing radiation dose to the lens whilst providing high quality images are presented together with a menu of anatomical features that require careful evaluation pre-operatively
Multimodality imaging in vivo for preclinical assessment of tumor-targeted doxorubicin nanoparticles.
This study presents a new multimodal imaging approach that includes high-frequency ultrasound, fluorescence intensity, confocal, and spectral imaging to improve the preclinical evaluation of new therapeutics in vivo. Here we use this approach to assess in vivo the therapeutic efficacy of the novel chemotherapy construct, HerDox during and after treatment. HerDox is comprised of doxorubicin non-covalently assembled in a viral-like particle targeted to HER2+ tumor cells, causing tumor cell death at over 10-fold lower dose compared to the untargeted drug, while sparing the heart. Whereas our initial proof-of-principle studies on HerDox used tumor growth/shrinkage rates as a measure of therapeutic efficacy, here we show that multimodal imaging deployed during and after treatment can supplement traditional modes of tumor monitoring to further characterize the particle in tissues of treated mice. Specifically, we show here that tumor cell apoptosis elicited by HerDox can be monitored in vivo during treatment using high frequency ultrasound imaging, while in situ confocal imaging of excised tumors shows that HerDox indeed penetrated tumor tissue and can be detected at the subcellular level, including in the nucleus, via Dox fluorescence. In addition, ratiometric spectral imaging of the same tumor tissue enables quantitative discrimination of HerDox fluorescence from autofluorescence in situ. In contrast to standard approaches of preclinical assessment, this new method provides multiple/complementary information that may shorten the time required for initial evaluation of in vivo efficacy, thus potentially reducing the time and cost for translating new drug molecules into the clinic
Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites
Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond
Cone beam CT of the musculoskeletal system : clinical applications
Objectives: The aim of this pictorial review is to illustrate the use of CBCT in a broad spectrum of musculoskeletal disorders and to compare its diagnostic merit with other imaging modalities, such as conventional radiography (CR), Multidetector Computed Tomography (MDCT) and Magnetic Resonance Imaging.
Background: Cone Beam Computed Tomography (CBCT) has been widely used for dental imaging for over two decades.
Discussion: Current CBCT equipment allows use for imaging of various musculoskeletal applications. Because of its low cost and relatively low irradiation, CBCT may have an emergent role in making a more precise diagnosis, assessment of local extent and follow-up of fractures and dislocations of small bones and joints. Due to its exquisite high spatial resolution, CBCT in combination with arthrography may be the preferred technique for detection and local staging of cartilage lesions in small joints. Evaluation of degenerative joint disorders may be facilitated by CBCT compared to CR, particularly in those anatomical areas in which there is much superposition of adjacent bony structures. The use of CBCT in evaluation of osteomyelitis is restricted to detection of sequestrum formation in chronic osteomyelitis. Miscellaneous applications include assessment of (symptomatic) variants, detection and characterization of tumour and tumour-like conditions of bone.
Teaching Points:
Review the spectrum of MSK disorders in which CBCT may be complementary to other imaging techniques.
Compare the advantages and drawbacks of CBCT compared to other imaging techniques.
Define the present and future role of CBCT in musculoskeletal imaging
- …
