2,492 research outputs found

    Digital Beamforming and Traffic Monitoring Using the new FSAR System of DLR

    Get PDF
    In November 2006 the first X-band test flight of DLR’s new FSAR system has been performed successfully and in February 2007 the first flight campaign has been conducted for acquiring experimental multi-channel data of controlled ground moving targets. In the paper the performed experiments and the used setup of the FSAR X-band section are described and preliminary results in the field of ground moving target indication and digital beamforming are presented

    High Speed Dim Air Target Detection Using Airborne Radar under Clutter and Jamming Effects

    Get PDF
    The challenging potential problems associated with using airborne radar in detection of high Speed Maneuvering Dim Target (HSMDT) are the highly noise, jamming and clutter effects. The problem is not only how to remove clutter and jamming as well as the range migration and Doppler ambiguity estimation problems due to high relative speed between the targets and airborne radar. Some of the recently published works ignored the range migration problems, while the others ignored the Doppler ambiguity estimation. In this paper a new hybrid technique using Optimum Space Time Adaptive Processing (OSTAP), Second Order Keystone Transform (SOKT), and the Improved Fractional Radon Transform (IFrRT) was proposed. The OSTAP was applied as anti-jamming and clutter rejection method, the SOKT corrects the range curvature and part of the range walk, then the IFrRT estimates the target’ radial acceleration and corrects the residual range walk. The simulation demonstrates the validity and effectiveness of the proposed technique, and its advantages over the previous researches by comparing its probability of detection with the traditional methods. The new approach increases the probability of detection, and also overcomes the limitation of Doppler frequency ambiguity

    Target Motion Estimation Techniques in Single-Channel SAR

    Get PDF
    —Synthetic Aperture Radar (SAR) systems are versatile, high-resolution radar imagers useful for providing detailed intelligence, surveillance, and reconnaissance, especially when atmospheric conditions are non-ideal for optical imagers. However, targets in SAR images are smeared when they are moving. Along-track interferometry is a commonly-used method for extracting the motion parameters of moving targets but requires a dualaperture SAR system, which may be power- size- or cost prohibitive. This paper presents a method of estimating target motion parameters in single-channel SAR data given geometric target motion constraints. This estimation method includes an initial estimate, computation of the SAR ambiguity function, and application of the target motion constraints
    • …
    corecore