26,691 research outputs found

    ImageNet Large Scale Visual Recognition Challenge

    Get PDF
    The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the five years of the challenge, and propose future directions and improvements.Comment: 43 pages, 16 figures. v3 includes additional comparisons with PASCAL VOC (per-category comparisons in Table 3, distribution of localization difficulty in Fig 16), a list of queries used for obtaining object detection images (Appendix C), and some additional reference

    Are Accuracy and Robustness Correlated?

    Full text link
    Machine learning models are vulnerable to adversarial examples formed by applying small carefully chosen perturbations to inputs that cause unexpected classification errors. In this paper, we perform experiments on various adversarial example generation approaches with multiple deep convolutional neural networks including Residual Networks, the best performing models on ImageNet Large-Scale Visual Recognition Challenge 2015. We compare the adversarial example generation techniques with respect to the quality of the produced images, and measure the robustness of the tested machine learning models to adversarial examples. Finally, we conduct large-scale experiments on cross-model adversarial portability. We find that adversarial examples are mostly transferable across similar network topologies, and we demonstrate that better machine learning models are less vulnerable to adversarial examples.Comment: Accepted for publication at ICMLA 201

    Large-scale image classification using ensembles of nested dichotomies

    Get PDF
    Many techniques to reduce the cost at test time in large-scale problems involve a hierarchical organization of classifiers, but are either too expensive to learn or degrade the classification performance. Conversely, in this work we show that using ensembles of randomized hierarchical decompositions of the original problem can both improve the accuracy and reduce the computational complexity at test time. The proposed method is evaluated in the ImageNet Large Scale Visual Recognition Challenge’10, with promising results.Peer ReviewedPostprint (author’s final draft

    Going Deeper with Convolutions

    Full text link
    We propose a deep convolutional neural network architecture codenamed "Inception", which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC 2014 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection
    • …
    corecore