11,513 research outputs found

    The Translocal Event and the Polyrhythmic Diagram

    Get PDF
    This thesis identifies and analyses the key creative protocols in translocal performance practice, and ends with suggestions for new forms of transversal live and mediated performance practice, informed by theory. It argues that ontologies of emergence in dynamic systems nourish contemporary practice in the digital arts. Feedback in self-organised, recursive systems and organisms elicit change, and change transforms. The arguments trace concepts from chaos and complexity theory to virtual multiplicity, relationality, intuition and individuation (in the work of Bergson, Deleuze, Guattari, Simondon, Massumi, and other process theorists). It then examines the intersection of methodologies in philosophy, science and art and the radical contingencies implicit in the technicity of real-time, collaborative composition. Simultaneous forces or tendencies such as perception/memory, content/ expression and instinct/intellect produce composites (experience, meaning, and intuition- respectively) that affect the sensation of interplay. The translocal event is itself a diagram - an interstice between the forces of the local and the global, between the tendencies of the individual and the collective. The translocal is a point of reference for exploring the distribution of affect, parameters of control and emergent aesthetics. Translocal interplay, enabled by digital technologies and network protocols, is ontogenetic and autopoietic; diagrammatic and synaesthetic; intuitive and transductive. KeyWorx is a software application developed for realtime, distributed, multimodal media processing. As a technological tool created by artists, KeyWorx supports this intuitive type of creative experience: a real-time, translocal “jamming” that transduces the lived experience of a “biogram,” a synaesthetic hinge-dimension. The emerging aesthetics are processual – intuitive, diagrammatic and transversal

    Adaptive Scales of Spatial Integration and Response Latencies in a Critically-Balanced Model of the Primary Visual Cortex

    Full text link
    The brain processes visual inputs having structure over a large range of spatial scales. The precise mechanisms or algorithms used by the brain to achieve this feat are largely unknown and an open problem in visual neuroscience. In particular, the spatial extent in visual space over which primary visual cortex (V1) performs evidence integration has been shown to change as a function of contrast and other visual parameters, thus adapting scale in visual space in an input-dependent manner. We demonstrate that a simple dynamical mechanism---dynamical criticality---can simultaneously account for the well-documented input-dependence characteristics of three properties of V1: scales of integration in visuotopic space, extents of lateral integration on the cortical surface, and response latencies

    Code, space and everyday life

    Get PDF
    In this paper we examine the role of code (software) in the spatial formation of collective life. Taking the view that human life and coded technology are folded into one another, we theorise space as ontogenesis. Space, we posit, is constantly being bought into being through a process of transduction – the constant making anew of a domain in reiterative and transformative practices - as an incomplete solution to a relational problem. The relational problem we examine is the ongoing encounter between individuals and environment where the solution, to a greater or lesser extent, is code. Code, we posit, is diversely embedded in collectives as coded objects, coded infrastructure, coded processes and coded assemblages. These objects, infrastructure, processes and assemblages possess technicity, that is, unfolding or evolutive power to make things happen; the ability to mediate, supplement, augment, monitor, regulate, operate, facilitate, produce collective life. We contend that when the technicity of code is operationalised it transduces one of three forms of hybrid spatial formations: code/space, coded space and backgrounded coded space. These formations are contingent, relational, extensible and scaleless, often stretched out across networks of greater or shorter length. We demonstrate the coded transduction of space through three vignettes – each a day in the life of three people living in London, UK, tracing the technical mediation of their interactions, transactions and mobilities. We then discuss how code becomes the relational solution to five different classes of problems – domestic living, travelling, working, communicating, and consuming

    A Neural Model for Self Organizing Feature Detectors and Classifiers in a Network Hierarchy

    Full text link
    Many models of early cortical processing have shown how local learning rules can produce efficient, sparse-distributed codes in which nodes have responses that are statistically independent and low probability. However, it is not known how to develop a useful hierarchical representation, containing sparse-distributed codes at each level of the hierarchy, that incorporates predictive feedback from the environment. We take a step in that direction by proposing a biologically plausible neural network model that develops receptive fields, and learns to make class predictions, with or without the help of environmental feedback. The model is a new type of predictive adaptive resonance theory network called Receptive Field ARTMAP, or RAM. RAM self organizes internal category nodes that are tuned to activity distributions in topographic input maps. Each receptive field is composed of multiple weight fields that are adapted via local, on-line learning, to form smooth receptive ftelds that reflect; the statistics of the activity distributions in the input maps. When RAM generates incorrect predictions, its vigilance is raised, amplifying subtractive inhibition and sharpening receptive fields until the error is corrected. Evaluation on several classification benchmarks shows that RAM outperforms a related (but neurally implausible) model called Gaussian ARTMAP, as well as several standard neural network and statistical classifters. A topographic version of RAM is proposed, which is capable of self organizing hierarchical representations. Topographic RAM is a model for receptive field development at any level of the cortical hierarchy, and provides explanations for a variety of perceptual learning data.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409

    Analysis and Synthesis of the Dynamic Response of Retinal Neurons

    Get PDF
    theory of linear systems analysis is developed in a form directly applicable to the treatment of the Limulus retina. The dynamics of the retina may conveniently be characterized by means of a spatiotemporal transfer function, which summarizes the response of the system to moving sinusoidal gratings ( analysis ). The response of the retina to an arbitrary stimulus may then be calculated by addition of the response to suitably weighted sinusoidal stimuli ( synthesis ). Responses were obtained from the in-situ retina by means of extracellular recording of impulse activity in single optic nerve fibers. Test ommatidia were chosen in the interior of the retina, to avoid asymmetries introduced by the edge of the retina. Stimuli which varied in both space and time were produced under computer control on the screen of a display oscilloscope, and were conveyed to the Limulus eye by means of a fiber-optic taper. Transfer functions were measured using counterphase modulation of cosine gratings according to a sum-of-sinusoids temporal signal, a procedure equivalent to the use of moving gratings, for ommatidia with symmetrical receptive fields. By means of these transfer functions, the responses of the Limulus eye to visual stimuli moving at various velocities were predicted in a parameter-free Fourier synthesis calculation. There was good agreement between these predictions and the measured responses to these stimuli. A quantitative model for the dynamic, integrative action of the Limulus retina is developed, based on the original formulation for the steady state given by the Hartline- Ratliff equations. The model comprises an excitatory generator potential, and dynamic processes of self and lateral inhibition. An explicit expression for the spatiotemporal transfer function is obtained in terms of transfer functions for the generator potential, self-inhibitory, and lateral-inhibitory transductions, and spatial transforms of the lateral inhibitory kernel and the point-spread characteristic of the experimental and physiological optics. Explicit functional forms for these component transductions are adopted. The parameters which occur in these expressions serve to incorporate information about the subcellular physiology of retinal neurons into the quantitative description of the function of the retina as a whole. Procedures are described for the estimation of these parameters from empirical transfer function data. Transfer functions calculated from the model on the basis of parameters obtained with these procedures show good agreement with the corresponding empirical transfer functions. The parameter values obtained in this way are, in general, quite consistent with the results of many more direct (and frequently more invasive) measurements reported in the literature. In particular, the inhibitory kernel, as determined from our transfer function measurements, shows a small crater in the vicinity of the test-ommatidium. The dynamical model can be used to describe the response of the retina in the vicinity of its boundary, as well as in the interior. An analysis, based on the Wiener-Hopf technique, is given for the response of peripheral retinal neurons. The predictions derived from this theory were compared with experiment through the use of illumination patterns in which one half of the retina was kept in darkness, while the remaining half was presented with a moving stimulus. This procedure permitted the calibration of model transfer functions by means of methods appropriate only for interior ommatidia, while simulating the neural environment at the edge of a homogeneous retina. Significant differences between the responses to stimuli which moved toward and away from the simulated edge were observed experimentally, in good agreement with the predictions of the theory. Similar behavior was also observed at the actual anatomical boundary of the eye

    Transindividual Equations/Matrices

    Get PDF
    This writing (thinking-feeling) unfolds (an articulation of) contemporary (dis)embodiment through specified glances at the "(post-)internet,” schizoid relationality, and network/device/identity matrices. Technogenetic (and hormonal) play and transductions for transindividuality on the transparency-obfuscation (or personality/anonymity) binaries arrive as psychotherapeutics for symphonic moving-sensing-feeling-thinking-communicating in a potentiated post-neoliberal matrix (networking). Generated is a set of direction-possibilities for a post-internet-bodied world consumed by a hegemony of individualizations and self-captures, desiring instead towards queerer ceremonies and telepathic forms of (care-)presence/therapy for being-together-alone (individuation). The concurrent/included choreographic and research-artistic work 3M0T1NG{n3tw0rk1ng} peeks into a technogenetic xeno-spacetime containing relating (meta-)selves
    • …
    corecore