135,547 research outputs found

    Neural 3D Mesh Renderer

    Full text link
    For modeling the 3D world behind 2D images, which 3D representation is most appropriate? A polygon mesh is a promising candidate for its compactness and geometric properties. However, it is not straightforward to model a polygon mesh from 2D images using neural networks because the conversion from a mesh to an image, or rendering, involves a discrete operation called rasterization, which prevents back-propagation. Therefore, in this work, we propose an approximate gradient for rasterization that enables the integration of rendering into neural networks. Using this renderer, we perform single-image 3D mesh reconstruction with silhouette image supervision and our system outperforms the existing voxel-based approach. Additionally, we perform gradient-based 3D mesh editing operations, such as 2D-to-3D style transfer and 3D DeepDream, with 2D supervision for the first time. These applications demonstrate the potential of the integration of a mesh renderer into neural networks and the effectiveness of our proposed renderer

    Virtual Rephotography: Novel View Prediction Error for 3D Reconstruction

    Full text link
    The ultimate goal of many image-based modeling systems is to render photo-realistic novel views of a scene without visible artifacts. Existing evaluation metrics and benchmarks focus mainly on the geometric accuracy of the reconstructed model, which is, however, a poor predictor of visual accuracy. Furthermore, using only geometric accuracy by itself does not allow evaluating systems that either lack a geometric scene representation or utilize coarse proxy geometry. Examples include light field or image-based rendering systems. We propose a unified evaluation approach based on novel view prediction error that is able to analyze the visual quality of any method that can render novel views from input images. One of the key advantages of this approach is that it does not require ground truth geometry. This dramatically simplifies the creation of test datasets and benchmarks. It also allows us to evaluate the quality of an unknown scene during the acquisition and reconstruction process, which is useful for acquisition planning. We evaluate our approach on a range of methods including standard geometry-plus-texture pipelines as well as image-based rendering techniques, compare it to existing geometry-based benchmarks, and demonstrate its utility for a range of use cases.Comment: 10 pages, 12 figures, paper was submitted to ACM Transactions on Graphics for revie

    A perceptual approach for stereoscopic rendering optimization

    Get PDF
    Cataloged from PDF version of article.The traditional way of stereoscopic rendering requires rendering the scene for left and right eyes separately: which doubles the rendering complexity. In this study, we propose a perceptually-based approach for accelerating stereoscopic rendering. This optimization approach is based on the Binocular Suppression Theory, which claims that the overall percept of a stereo pair in a region is determined by the dominant image on the corresponding region. We investigate how binocular suppression mechanism of human visual system can be utilized for rendering optimization. Our aim is to identify the graphics rendering and modeling features that do not affect the overall quality of a stereo pair when simplified in one view. By combining the results of this investigation with the principles of visual attention, we infer that this optimization approach is feasible if the high quality view has more intensity contrast. For this reason, we performed a subjective experiment, in which various representative graphical methods were analyzed. The experimental results verified our hypothesis that a modification, applied on a single view, is not perceptible if it decreases the intensity contrast, and thus can be used for stereoscopic rendering. (C) 2009 Elsevier Ltd. All rights reserved

    Binary Adaptive Semi-Global Matching Based on Image Edges

    Get PDF
    Image-based modeling and rendering is currently one of the most challenging topics in Computer Vision and Photogrammetry. The key issue here is building a set of dense correspondence points between two images, namely dense matching or stereo matching. Among all dense matching algorithms, Semi-Global Matching (SGM) is arguably one of the most promising algorithms for real-time stereo vision. Compared with global matching algorithms, SGM aggregates matching cost from several (eight or sixteen) directions rather than only the epipolar line using Dynamic Programming (DP). Thus, SGM eliminates the classical “streaking problem” and greatly improves its accuracy and efficiency. In this paper, we aim at further improvement of SGM accuracy without increasing the computational cost. We propose setting the penalty parameters adaptively according to image edges extracted by edge detectors. We have carried out experiments on the standard Middlebury stereo dataset and evaluated the performance of our modified method with the ground truth. The results have shown a noticeable accuracy improvement compared with the results using fixed penalty parameters while the runtime computational cost was not increased

    Shape: A 3D Modeling Tool for Astrophysics

    Full text link
    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a-priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.Comment: 13 pages, 11 figures, accepted for publication in the "IEEE Transactions on Visualization and Computer Graphics

    A survey of computer representations of trees for realistic and efficient rendering

    Full text link
    This paper gives an overview of computer graphics representations of trees commonly used for the rendering of complex scene of vegetation. Looking for the right compromise between realism and efficiency has lead researchers to consider various types of geometrical plant models with different types of complexity. To achieve realist plant model, a complex structure of plant with full details is generally considered. In contrast, to promote efficiency, other approaches summarize plant geometry with few primitives allowing rapid rendering. Finally, to find a good compromise, structures with adaptive complexity are defined. Theses different types of representations and the ways to use them are presented, classified and discussed. The proposed classification principles rely on the type of structural details used in the plants representations. Characterization of all these methods is completed with various additional criteria including rendering primitive type, distance validity, interactive possibilities, animation ability and lighting properties. (Résumé d'auteur

    Modeling Camera Effects to Improve Visual Learning from Synthetic Data

    Full text link
    Recent work has focused on generating synthetic imagery to increase the size and variability of training data for learning visual tasks in urban scenes. This includes increasing the occurrence of occlusions or varying environmental and weather effects. However, few have addressed modeling variation in the sensor domain. Sensor effects can degrade real images, limiting generalizability of network performance on visual tasks trained on synthetic data and tested in real environments. This paper proposes an efficient, automatic, physically-based augmentation pipeline to vary sensor effects --chromatic aberration, blur, exposure, noise, and color cast-- for synthetic imagery. In particular, this paper illustrates that augmenting synthetic training datasets with the proposed pipeline reduces the domain gap between synthetic and real domains for the task of object detection in urban driving scenes

    Modeling Surface Appearance from a Single Photograph using Self-augmented Convolutional Neural Networks

    Full text link
    We present a convolutional neural network (CNN) based solution for modeling physically plausible spatially varying surface reflectance functions (SVBRDF) from a single photograph of a planar material sample under unknown natural illumination. Gathering a sufficiently large set of labeled training pairs consisting of photographs of SVBRDF samples and corresponding reflectance parameters, is a difficult and arduous process. To reduce the amount of required labeled training data, we propose to leverage the appearance information embedded in unlabeled images of spatially varying materials to self-augment the training process. Starting from an initial approximative network obtained from a small set of labeled training pairs, we estimate provisional model parameters for each unlabeled training exemplar. Given this provisional reflectance estimate, we then synthesize a novel temporary labeled training pair by rendering the exact corresponding image under a new lighting condition. After refining the network using these additional training samples, we re-estimate the provisional model parameters for the unlabeled data and repeat the self-augmentation process until convergence. We demonstrate the efficacy of the proposed network structure on spatially varying wood, metals, and plastics, as well as thoroughly validate the effectiveness of the self-augmentation training process.Comment: Accepted to SIGGRAPH 201
    corecore