2 research outputs found

    Image transmission over Gilbert-Elliot and ITU fading channels using DVB-T2 channel coding and QPSK-OFDM

    Get PDF
    In this work, a concatenated forward error correction (FEC) scheme together with Orthogonal Frequency Division Multiplexing (OFDM) have been used for effective transmission of data/images over additive and fading channels. With a Bose Chaudhuri Hocquenghem (BCH) code as the outer code and a Low Density Parity Check (LDPC) code as the inner code, the transmission has been simulated over both the Gilbert-Elliot and ITU Rayleigh fading channels. The FEC parameters assumed throughout the simulations were obtained from the DVB-T2 standard and the Base Band (BB) frames were created by making use of shortening and zero-padding concepts. The results which have been presented in terms of BER and psycho-visual performances show the resilience of the FEC schemes and OFDM to channel impairments. The BER performances attained over the Gilbert-Elliot Channel (a channel that introduces burst errors when in the bad state) using LDPC only and BCH-LDPC concatenated coding indicated that the outer BCH coding will start to achieve a much lower BER after an SNR of 5 dB. Over the ITU-A Rayleigh fading channel it was observed that the performance increment due to the outer BCH encoder only become apparent after 6 dB when compared to the rate ¼ LDPC only coded system BER performance. Over the Gilbert-Elliot channel a BCH-LDPC coded QPSK-OFDM system would provide a BER of 3×10-4 at 6 dB while the same BER for the ITU Vehicular-A channel was possible at 6.6 dB

    On Transmission System Design for Wireless Broadcasting

    Get PDF
    This thesis considers aspects related to the design and standardisation of transmission systems for wireless broadcasting, comprising terrestrial and mobile reception. The purpose is to identify which factors influence the technical decisions and what issues could be better considered in the design process in order to assess different use cases, service scenarios and end-user quality. Further, the necessity of cross-layer optimisation for efficient data transmission is emphasised and means to take this into consideration are suggested. The work is mainly related terrestrial and mobile digital video broadcasting systems but many of the findings can be generalised also to other transmission systems and design processes. The work has led to three main conclusions. First, it is discovered that there are no sufficiently accurate error criteria for measuring the subjective perceived audiovisual quality that could be utilised in transmission system design. Means for designing new error criteria for mobile TV (television) services are suggested and similar work related to other services is recommended. Second, it is suggested that in addition to commercial requirements there should be technical requirements setting the frame work for the design process of a new transmission system. The technical requirements should include the assessed reception conditions, technical quality of service and service functionalities. Reception conditions comprise radio channel models, receiver types and antenna types. Technical quality of service consists of bandwidth, timeliness and reliability. Of these, the thesis focuses on radio channel models and errorcriteria (reliability) as two of the most important design challenges and provides means to optimise transmission parameters based on these. Third, the thesis argues that the most favourable development for wireless broadcasting would be a single system suitable for all scenarios of wireless broadcasting. It is claimed that there are no major technical obstacles to achieve this and that the recently published second generation digital terrestrial television broadcasting system provides a good basis. The challenges and opportunities of a universal wireless broadcasting system are discussed mainly from technical but briefly also from commercial and regulatory aspectSiirretty Doriast
    corecore