362,848 research outputs found

    Visual-hint Boundary to Segment Algorithm for Image Segmentation

    Full text link
    Image segmentation has been a very active research topic in image analysis area. Currently, most of the image segmentation algorithms are designed based on the idea that images are partitioned into a set of regions preserving homogeneous intra-regions and inhomogeneous inter-regions. However, human visual intuition does not always follow this pattern. A new image segmentation method named Visual-Hint Boundary to Segment (VHBS) is introduced, which is more consistent with human perceptions. VHBS abides by two visual hint rules based on human perceptions: (i) the global scale boundaries tend to be the real boundaries of the objects; (ii) two adjacent regions with quite different colors or textures tend to result in the real boundaries between them. It has been demonstrated by experiments that, compared with traditional image segmentation method, VHBS has better performance and also preserves higher computational efficiency.Comment: 45 page

    Topology, homogeneity and scale factors for object detection: application of eCognition software for urban mapping using multispectral satellite image

    Full text link
    The research scope of this paper is to apply spatial object based image analysis (OBIA) method for processing panchromatic multispectral image covering study area of Brussels for urban mapping. The aim is to map different land cover types and more specifically, built-up areas from the very high resolution (VHR) satellite image using OBIA approach. A case study covers urban landscapes in the eastern areas of the city of Brussels, Belgium. Technically, this research was performed in eCognition raster processing software demonstrating excellent results of image segmentation and classification. The tools embedded in eCognition enabled to perform image segmentation and objects classification processes in a semi-automated regime, which is useful for the city planning, spatial analysis and urban growth analysis. The combination of the OBIA method together with technical tools of the eCognition demonstrated applicability of this method for urban mapping in densely populated areas, e.g. in megapolis and capital cities. The methodology included multiresolution segmentation and classification of the created objects.Comment: 6 pages, 12 figures, INSO2015, Ed. by A. Girgvliani et al. Akaki Tsereteli State University, Kutaisi (Imereti), Georgi

    Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology

    Get PDF
    The incidence of thyroid nodule is very high and generally increases with the age. Thyroid nodule may presage the emergence of thyroid cancer. The thyroid nodule can be completely cured if detected early. Fine needle aspiration cytology is a recognized early diagnosis method of thyroid nodule. There are still some limitations in the fine needle aspiration cytology, and the ultrasound diagnosis of thyroid nodule has become the first choice for auxiliary examination of thyroid nodular disease. If we could combine medical imaging technology and fine needle aspiration cytology, the diagnostic rate of thyroid nodule would be improved significantly. The properties of ultrasound will degrade the image quality, which makes it difficult to recognize the edges for physicians. Image segmentation technique based on graph theory has become a research hotspot at present. Normalized cut (Ncut) is a representative one, which is suitable for segmentation of feature parts of medical image. However, how to solve the normalized cut has become a problem, which needs large memory capacity and heavy calculation of weight matrix. It always generates over segmentation or less segmentation which leads to inaccurate in the segmentation. The speckle noise in B ultrasound image of thyroid tumor makes the quality of the image deteriorate. In the light of this characteristic, we combine the anisotropic diffusion model with the normalized cut in this paper. After the enhancement of anisotropic diffusion model, it removes the noise in the B ultrasound image while preserves the important edges and local details. This reduces the amount of computation in constructing the weight matrix of the improved normalized cut and improves the accuracy of the final segmentation results. The feasibility of the method is proved by the experimental results.Comment: 15pages,13figure
    corecore