362,848 research outputs found
Visual-hint Boundary to Segment Algorithm for Image Segmentation
Image segmentation has been a very active research topic in image analysis
area. Currently, most of the image segmentation algorithms are designed based
on the idea that images are partitioned into a set of regions preserving
homogeneous intra-regions and inhomogeneous inter-regions. However, human
visual intuition does not always follow this pattern. A new image segmentation
method named Visual-Hint Boundary to Segment (VHBS) is introduced, which is
more consistent with human perceptions. VHBS abides by two visual hint rules
based on human perceptions: (i) the global scale boundaries tend to be the real
boundaries of the objects; (ii) two adjacent regions with quite different
colors or textures tend to result in the real boundaries between them. It has
been demonstrated by experiments that, compared with traditional image
segmentation method, VHBS has better performance and also preserves higher
computational efficiency.Comment: 45 page
Topology, homogeneity and scale factors for object detection: application of eCognition software for urban mapping using multispectral satellite image
The research scope of this paper is to apply spatial object based image
analysis (OBIA) method for processing panchromatic multispectral image covering
study area of Brussels for urban mapping. The aim is to map different land
cover types and more specifically, built-up areas from the very high resolution
(VHR) satellite image using OBIA approach. A case study covers urban landscapes
in the eastern areas of the city of Brussels, Belgium. Technically, this
research was performed in eCognition raster processing software demonstrating
excellent results of image segmentation and classification. The tools embedded
in eCognition enabled to perform image segmentation and objects classification
processes in a semi-automated regime, which is useful for the city planning,
spatial analysis and urban growth analysis. The combination of the OBIA method
together with technical tools of the eCognition demonstrated applicability of
this method for urban mapping in densely populated areas, e.g. in megapolis and
capital cities. The methodology included multiresolution segmentation and
classification of the created objects.Comment: 6 pages, 12 figures, INSO2015, Ed. by A. Girgvliani et al. Akaki
Tsereteli State University, Kutaisi (Imereti), Georgi
Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology
The incidence of thyroid nodule is very high and generally increases with the
age. Thyroid nodule may presage the emergence of thyroid cancer. The thyroid
nodule can be completely cured if detected early. Fine needle aspiration
cytology is a recognized early diagnosis method of thyroid nodule. There are
still some limitations in the fine needle aspiration cytology, and the
ultrasound diagnosis of thyroid nodule has become the first choice for
auxiliary examination of thyroid nodular disease. If we could combine medical
imaging technology and fine needle aspiration cytology, the diagnostic rate of
thyroid nodule would be improved significantly. The properties of ultrasound
will degrade the image quality, which makes it difficult to recognize the edges
for physicians. Image segmentation technique based on graph theory has become a
research hotspot at present. Normalized cut (Ncut) is a representative one,
which is suitable for segmentation of feature parts of medical image. However,
how to solve the normalized cut has become a problem, which needs large memory
capacity and heavy calculation of weight matrix. It always generates over
segmentation or less segmentation which leads to inaccurate in the
segmentation. The speckle noise in B ultrasound image of thyroid tumor makes
the quality of the image deteriorate. In the light of this characteristic, we
combine the anisotropic diffusion model with the normalized cut in this paper.
After the enhancement of anisotropic diffusion model, it removes the noise in
the B ultrasound image while preserves the important edges and local details.
This reduces the amount of computation in constructing the weight matrix of the
improved normalized cut and improves the accuracy of the final segmentation
results. The feasibility of the method is proved by the experimental results.Comment: 15pages,13figure
- …
