10,831 research outputs found

    Local Descriptors Optimized for Average Precision

    Full text link
    Extraction of local feature descriptors is a vital stage in the solution pipelines for numerous computer vision tasks. Learning-based approaches improve performance in certain tasks, but still cannot replace handcrafted features in general. In this paper, we improve the learning of local feature descriptors by optimizing the performance of descriptor matching, which is a common stage that follows descriptor extraction in local feature based pipelines, and can be formulated as nearest neighbor retrieval. Specifically, we directly optimize a ranking-based retrieval performance metric, Average Precision, using deep neural networks. This general-purpose solution can also be viewed as a listwise learning to rank approach, which is advantageous compared to recent local ranking approaches. On standard benchmarks, descriptors learned with our formulation achieve state-of-the-art results in patch verification, patch retrieval, and image matching.Comment: 13 pages, 8 figures. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Learning Dynamic Classes of Events using Stacked Multilayer Perceptron Networks

    Full text link
    People often use a web search engine to find information about events of interest, for example, sport competitions, political elections, festivals and entertainment news. In this paper, we study a problem of detecting event-related queries, which is the first step before selecting a suitable time-aware retrieval model. In general, event-related information needs can be observed in query streams through various temporal patterns of user search behavior, e.g., spiky peaks for popular events, and periodicities for repetitive events. However, it is also common that users search for non-popular events, which may not exhibit temporal variations in query streams, e.g., past events recently occurred, historical events triggered by anniversaries or similar events, and future events anticipated to happen. To address the challenge of detecting dynamic classes of events, we propose a novel deep learning model to classify a given query into a predetermined set of multiple event types. Our proposed model, a Stacked Multilayer Perceptron (S-MLP) network, consists of multilayer perceptron used as a basic learning unit. We assemble stacked units to further learn complex relationships between neutrons in successive layers. To evaluate our proposed model, we conduct experiments using real-world queries and a set of manually created ground truth. Preliminary results have shown that our proposed deep learning model outperforms the state-of-the-art classification models significantly.Comment: Neu-IR '16 SIGIR Workshop on Neural Information Retrieval, 6 pages, 4 figure

    Multi-modal gated recurrent units for image description

    Full text link
    Using a natural language sentence to describe the content of an image is a challenging but very important task. It is challenging because a description must not only capture objects contained in the image and the relationships among them, but also be relevant and grammatically correct. In this paper a multi-modal embedding model based on gated recurrent units (GRU) which can generate variable-length description for a given image. In the training step, we apply the convolutional neural network (CNN) to extract the image feature. Then the feature is imported into the multi-modal GRU as well as the corresponding sentence representations. The multi-modal GRU learns the inter-modal relations between image and sentence. And in the testing step, when an image is imported to our multi-modal GRU model, a sentence which describes the image content is generated. The experimental results demonstrate that our multi-modal GRU model obtains the state-of-the-art performance on Flickr8K, Flickr30K and MS COCO datasets.Comment: 25 pages, 7 figures, 6 tables, magazin

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval
    • …
    corecore