3 research outputs found

    An Abstraction Model for Semantic Segmentation Algorithms

    Full text link
    Semantic segmentation is a process of classifying each pixel in the image. Due to its advantages, sematic segmentation is used in many tasks such as cancer detection, robot-assisted surgery, satellite image analysis, self-driving car control, etc. In this process, accuracy and efficiency are the two crucial goals for this purpose, and there are several state of the art neural networks. In each method, by employing different techniques, new solutions have been presented for increasing efficiency, accuracy, and reducing the costs. The diversity of the implemented approaches for semantic segmentation makes it difficult for researches to achieve a comprehensive view of the field. To offer a comprehensive view, in this paper, an abstraction model for the task of semantic segmentation is offered. The proposed framework consists of four general blocks that cover the majority of majority of methods that have been proposed for semantic segmentation. We also compare different approaches and consider the importance of each part in the overall performance of a method.Comment: 6 pages 2 figure

    Supervised Deep Learning for Content-Aware Image Retargeting with Fourier Convolutions

    Full text link
    Image retargeting aims to alter the size of the image with attention to the contents. One of the main obstacles to training deep learning models for image retargeting is the need for a vast labeled dataset. Labeled datasets are unavailable for training deep learning models in the image retargeting tasks. As a result, we present a new supervised approach for training deep learning models. We use the original images as ground truth and create inputs for the model by resizing and cropping the original images. A second challenge is generating different image sizes in inference time. However, regular convolutional neural networks cannot generate images of different sizes than the input image. To address this issue, we introduced a new method for supervised learning. In our approach, a mask is generated to show the desired size and location of the object. Then the mask and the input image are fed to the network. Comparing image retargeting methods and our proposed method demonstrates the model's ability to produce high-quality retargeted images. Afterward, we compute the image quality assessment score for each output image based on different techniques and illustrate the effectiveness of our approach.Comment: 18 pages, 5 figure
    corecore