73 research outputs found

    Supervised Deep Learning for Content-Aware Image Retargeting with Fourier Convolutions

    Full text link
    Image retargeting aims to alter the size of the image with attention to the contents. One of the main obstacles to training deep learning models for image retargeting is the need for a vast labeled dataset. Labeled datasets are unavailable for training deep learning models in the image retargeting tasks. As a result, we present a new supervised approach for training deep learning models. We use the original images as ground truth and create inputs for the model by resizing and cropping the original images. A second challenge is generating different image sizes in inference time. However, regular convolutional neural networks cannot generate images of different sizes than the input image. To address this issue, we introduced a new method for supervised learning. In our approach, a mask is generated to show the desired size and location of the object. Then the mask and the input image are fed to the network. Comparing image retargeting methods and our proposed method demonstrates the model's ability to produce high-quality retargeted images. Afterward, we compute the image quality assessment score for each output image based on different techniques and illustrate the effectiveness of our approach.Comment: 18 pages, 5 figure

    An Abstraction Model for Semantic Segmentation Algorithms

    Full text link
    Semantic segmentation is a process of classifying each pixel in the image. Due to its advantages, sematic segmentation is used in many tasks such as cancer detection, robot-assisted surgery, satellite image analysis, self-driving car control, etc. In this process, accuracy and efficiency are the two crucial goals for this purpose, and there are several state of the art neural networks. In each method, by employing different techniques, new solutions have been presented for increasing efficiency, accuracy, and reducing the costs. The diversity of the implemented approaches for semantic segmentation makes it difficult for researches to achieve a comprehensive view of the field. To offer a comprehensive view, in this paper, an abstraction model for the task of semantic segmentation is offered. The proposed framework consists of four general blocks that cover the majority of majority of methods that have been proposed for semantic segmentation. We also compare different approaches and consider the importance of each part in the overall performance of a method.Comment: 6 pages 2 figure

    Saliency Tree: A Novel Saliency Detection Framework

    Full text link

    Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement

    Get PDF
    We present a novel spatiotemporal saliency detection method to estimate salient regions in videos based on the gradient flow field and energy optimization. The proposed gradient flow field incorporates two distinctive features: 1) intra-frame boundary information and 2) inter-frame motion information together for indicating the salient regions. Based on the effective utilization of both intra-frame and inter-frame information in the gradient flow field, our algorithm is robust enough to estimate the object and background in complex scenes with various motion patterns and appearances. Then, we introduce local as well as global contrast saliency measures using the foreground and background information estimated from the gradient flow field. These enhanced contrast saliency cues uniformly highlight an entire object. We further propose a new energy function to encourage the spatiotemporal consistency of the output saliency maps, which is seldom explored in previous video saliency methods. The experimental results show that the proposed algorithm outperforms state-of-the-art video saliency detection methods

    Shapes and Context: In-the-Wild Image Synthesis & Manipulation

    Full text link
    We introduce a data-driven approach for interactively synthesizing in-the-wild images from semantic label maps. Our approach is dramatically different from recent work in this space, in that we make use of no learning. Instead, our approach uses simple but classic tools for matching scene context, shapes, and parts to a stored library of exemplars. Though simple, this approach has several notable advantages over recent work: (1) because nothing is learned, it is not limited to specific training data distributions (such as cityscapes, facades, or faces); (2) it can synthesize arbitrarily high-resolution images, limited only by the resolution of the exemplar library; (3) by appropriately composing shapes and parts, it can generate an exponentially large set of viable candidate output images (that can say, be interactively searched by a user). We present results on the diverse COCO dataset, significantly outperforming learning-based approaches on standard image synthesis metrics. Finally, we explore user-interaction and user-controllability, demonstrating that our system can be used as a platform for user-driven content creation.Comment: Project Page: http://www.cs.cmu.edu/~aayushb/OpenShapes
    • …
    corecore