15,911 research outputs found

    Optimization for automated assembly of puzzles

    Get PDF
    The puzzle assembly problem has many application areas such as restoration and reconstruction of archeological findings, repairing of broken objects, solving jigsaw type puzzles, molecular docking problem, etc. The puzzle pieces usually include not only geometrical shape information but also visual information such as texture, color, and continuity of lines. This paper presents a new approach to the puzzle assembly problem that is based on using textural features and geometrical constraints. The texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. Feature values are derived from these original and predicted images of pieces. An affinity measure of corresponding pieces is defined and alignment of the puzzle pieces is formulated as an optimization problem where the optimum assembly of the pieces is achieved by maximizing the total affinity measure. An fft based image registration technique is used to speed up the alignment of the pieces. Experimental results are presented on real and artificial data sets

    A texture based approach to reconstruction of archaeological finds

    Get PDF
    Reconstruction of archaeological finds from fragments, is a tedious task requiring many hours of work from the archaeologists and restoration personnel. In this paper we present a framework for the full reconstruction of the original objects using texture and surface design information on the sherd. The texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. The confidence of this process is also defined. Feature values are derived from these original and predicted images of pieces. A combination of the feature and confidence values is used to generate an affinity measure of corresponding pieces. The optimization of total affinity gives the best assembly of the piece. Experimental results are presented on real and artificial data

    Structure Preserving Large Imagery Reconstruction

    Get PDF
    With the explosive growth of web-based cameras and mobile devices, billions of photographs are uploaded to the internet. We can trivially collect a huge number of photo streams for various goals, such as image clustering, 3D scene reconstruction, and other big data applications. However, such tasks are not easy due to the fact the retrieved photos can have large variations in their view perspectives, resolutions, lighting, noises, and distortions. Fur-thermore, with the occlusion of unexpected objects like people, vehicles, it is even more challenging to find feature correspondences and reconstruct re-alistic scenes. In this paper, we propose a structure-based image completion algorithm for object removal that produces visually plausible content with consistent structure and scene texture. We use an edge matching technique to infer the potential structure of the unknown region. Driven by the estimated structure, texture synthesis is performed automatically along the estimated curves. We evaluate the proposed method on different types of images: from highly structured indoor environment to natural scenes. Our experimental results demonstrate satisfactory performance that can be potentially used for subsequent big data processing, such as image localization, object retrieval, and scene reconstruction. Our experiments show that this approach achieves favorable results that outperform existing state-of-the-art techniques

    Symmetry breaking and quantum correlations in finite systems: Studies of quantum dots and ultracold Bose gases and related nuclear and chemical methods

    Full text link
    Investigations of emergent symmetry breaking phenomena occurring in small finite-size systems are reviewed, with a focus on the strongly correlated regime of electrons in two-dimensional semicoductor quantum dots and trapped ultracold bosonic atoms in harmonic traps. Throughout the review we emphasize universal aspects and similarities of symmetry breaking found in these systems, as well as in more traditional fields like nuclear physics and quantum chemistry, which are characterized by very different interparticle forces. A unified description of strongly correlated phenomena in finite systems of repelling particles (whether fermions or bosons) is presented through the development of a two-step method of symmetry breaking at the unrestricted Hartree-Fock level and of subsequent symmetry restoration via post Hartree-Fock projection techniques. Quantitative and qualitative aspects of the two-step method are treated and validated by exact diagonalization calculations. Strongly-correlated phenomena emerging from symmetry breaking include: (I) Chemical bonding, dissociation, and entanglement (at zero and finite magnetic fields) in quantum dot molecules and in pinned electron molecular dimers formed within a single anisotropic quantum dot. (II) Electron crystallization, with particle localization on the vertices of concentric polygonal rings, and formation of rotating electron molecules (REMs) in circular quantum dots. (III) At high magnetic fields, the REMs are described by parameter-free analytic wave functions, which are an alternative to the Laughlin and composite-fermion approaches. (IV) Crystalline phases of strongly repelling bosons. In rotating traps and in analogy with the REMs, such repelling bosons form rotating boson molecules (RBMs).Comment: Review article published in Reports on Progress in Physics. REVTEX4. 95 pages with 37 color figures. To download a copy with high-quality figures, go to publication #82 in http://www.prism.gatech.edu/~ph274cy

    Use of neural networks to predict Ocr accuracy

    Full text link
    Use of Neural Networks to Predict OCR Accuracy investigates issues in developing an artificial neural network (ANN) based system for prediction of OCR accuracy from the image of a page. This work extends the work of Blando and Gonzalez in the following ways: enlarging training data, proposing new features, comparing different ANN architectures, and introducing a cross-validation learning algorithm; The following experiments were performed: comparison of 14 dimension feature metrics and 7 dimension feature metrics, comparison of an ANN trained with and without cross-validation, comparison of different neural network architectures, comparison of prediction capability of neural network and linear regression, comparison of the prediction capability of neural network using 14 dimension feature metrics and linear regression using reject markers. The results show that neural network can outperform linear regression if properly trained, and that the new feature metrics provide improved predictive ability
    corecore