13,030 research outputs found

    Accurate and automatic NOAA-AVHRR image navigation using a global contour matching approach

    Get PDF
    The problem of precise and automatic AVHRR image navigation is tractable in theory, but has proved to be somewhat difficult in practice. The authors' work has been motivated by the need for a fully automatic and operational navigation system capable of geo-referencing NOAA-AVHRR images with high accuracy and without operator supervision. The proposed method is based on the simultaneous use of an orbital model and a contour matching approach. This last process, relying on an affine transformation model, is used to correct the errors caused by inaccuracies in orbit modeling, nonzero value for the spacecraft's roll, pitch and yaw, errors due to inaccuracies in the satellite positioning and failures in the satellite internal clock. The automatic global contour matching process is summarized as follows: i) Estimation of the gradient energy map (edges) in the sensed image and detection of the cloudless (reliable) areas in this map. ii) Initialization of the affine model parameters by minimizing the Euclidean distance between the reference and sensed images objects. iii) Simultaneous optimization of all reference image contours on the sensed image by energy minimization in the domain of the global transformation parameters. The process is iterated in a hierarchical way, reducing the parameter searching space at each iteration. The proposed image navigation algorithm has proved to be capable of geo-referencing a satellite image within 1 pixel.Peer ReviewedPostprint (published version

    Morphing Ensemble Kalman Filters

    Full text link
    A new type of ensemble filter is proposed, which combines an ensemble Kalman filter (EnKF) with the ideas of morphing and registration from image processing. This results in filters suitable for nonlinear problems whose solutions exhibit moving coherent features, such as thin interfaces in wildfire modeling. The ensemble members are represented as the composition of one common state with a spatial transformation, called registration mapping, plus a residual. A fully automatic registration method is used that requires only gridded data, so the features in the model state do not need to be identified by the user. The morphing EnKF operates on a transformed state consisting of the registration mapping and the residual. Essentially, the morphing EnKF uses intermediate states obtained by morphing instead of linear combinations of the states.Comment: 17 pages, 7 figures. Added DDDAS references to the introductio

    Point-wise Map Recovery and Refinement from Functional Correspondence

    Get PDF
    Since their introduction in the shape analysis community, functional maps have met with considerable success due to their ability to compactly represent dense correspondences between deformable shapes, with applications ranging from shape matching and image segmentation, to exploration of large shape collections. Despite the numerous advantages of such representation, however, the problem of converting a given functional map back to a point-to-point map has received a surprisingly limited interest. In this paper we analyze the general problem of point-wise map recovery from arbitrary functional maps. In doing so, we rule out many of the assumptions required by the currently established approach -- most notably, the limiting requirement of the input shapes being nearly-isometric. We devise an efficient recovery process based on a simple probabilistic model. Experiments confirm that this approach achieves remarkable accuracy improvements in very challenging cases
    • …
    corecore