8 research outputs found

    Super-Resolution of Three-Dimensional Temperature and Velocity for Building-Resolving Urban Micrometeorology Using Physics-Guided Convolutional Neural Networks with Image Inpainting Techniques

    Full text link
    Atmospheric simulations for urban cities can be computationally intensive because of the need for high spatial resolution, such as a few meters, to accurately represent buildings and streets. Deep learning has recently gained attention across various physical sciences for its potential to reduce computational cost. Super-resolution is one such technique that enhances the resolution of data. This paper proposes a convolutional neural network (CNN) that super-resolves instantaneous snapshots of three-dimensional air temperature and wind velocity fields for urban micrometeorology. This super-resolution process requires not only an increase in spatial resolution but also the restoration of missing data caused by the difference in the building shapes that depend on the resolution. The proposed CNN incorporates gated convolution, which is an image inpainting technique that infers missing pixels. The CNN performance has been verified via supervised learning utilizing building-resolving micrometeorological simulations around Tokyo Station in Japan. The CNN successfully reconstructed the temperature and velocity fields around the high-resolution buildings, despite the missing data at lower altitudes due to the coarseness of the low-resolution buildings. This result implies that near-surface flows can be inferred from flows above buildings. This hypothesis was assessed via numerical experiments where all input values below a certain height were made missing. This research suggests the possibility that building-resolving micrometeorological simulations become more practical for urban cities with the aid of neural networks that enhance computational efficiency
    corecore