594,694 research outputs found

    Statistical image fusion with generalised Gaussian and Alpha-Stable distributions

    Get PDF
    This paper describes a new methodology for multimodal image fusion based on non-Gaussian statistical modelling of wavelet coefficients of the input images. The use of families of generalised Gaussian and alpha-stable distributions for modelling image wavelet coefficients is investigated and methods for estimating distribution parameters are proposed. Improved techniques for image fusion are developed, by incorporating these models into the weighted average image fusion algorithm. The superior performance of the proposed methods is demonstrated using multimodal image datasets. © 2007 IEEE.This paper describes a new methodology for multimodal image fusion based on non-Gaussian statistical modelling of wavelet coefficients of the input images. The use of families of generalised Gaussian and alpha-stable distributions for modelling image wavelet coefficients is investigated and methods for estimating distribution parameters are proposed. Improved techniques for image fusion are developed, by incorporating these models into the weighted average image fusion algorithm. The superior performance of the proposed methods is demonstrated using multimodal image dataset

    Image Fusion With Cosparse Analysis Operator

    Full text link
    The paper addresses the image fusion problem, where multiple images captured with different focus distances are to be combined into a higher quality all-in-focus image. Most current approaches for image fusion strongly rely on the unrealistic noise-free assumption used during the image acquisition, and then yield limited robustness in fusion processing. In our approach, we formulate the multi-focus image fusion problem in terms of an analysis sparse model, and simultaneously perform the restoration and fusion of multi-focus images. Based on this model, we propose an analysis operator learning, and define a novel fusion function to generate an all-in-focus image. Experimental evaluations confirm the effectiveness of the proposed fusion approach both visually and quantitatively, and show that our approach outperforms state-of-the-art fusion methods.Comment: 12 pages, 4 figures, 1 table, Submitted to IEEE Signal Processing Letters on December 201

    A Novel Metric Approach Evaluation For The Spatial Enhancement Of Pan-Sharpened Images

    Full text link
    Various and different methods can be used to produce high-resolution multispectral images from high-resolution panchromatic image (PAN) and low-resolution multispectral images (MS), mostly on the pixel level. The Quality of image fusion is an essential determinant of the value of processing images fusion for many applications. Spatial and spectral qualities are the two important indexes that used to evaluate the quality of any fused image. However, the jury is still out of fused image's benefits if it compared with its original images. In addition, there is a lack of measures for assessing the objective quality of the spatial resolution for the fusion methods. So, an objective quality of the spatial resolution assessment for fusion images is required. Therefore, this paper describes a new approach proposed to estimate the spatial resolution improve by High Past Division Index (HPDI) upon calculating the spatial-frequency of the edge regions of the image and it deals with a comparison of various analytical techniques for evaluating the Spatial quality, and estimating the colour distortion added by image fusion including: MG, SG, FCC, SD, En, SNR, CC and NRMSE. In addition, this paper devotes to concentrate on the comparison of various image fusion techniques based on pixel and feature fusion technique.Comment: arXiv admin note: substantial text overlap with arXiv:1110.497
    corecore