146 research outputs found

    A class of M-Channel linear-phase biorthogonal filter banks and their applications to subband coding

    Get PDF
    This correspondence presents a new factorization for linearphase biorthogonal perfect reconstruction (PR) FIR filter banks. Using this factorization, we propose a new family of lapped transform called the generalized lapped transform (GLT). Since the analysis and synthesis filters of the GLT are not restricted to be the time reverses of each other, they can offer more freedom to avoid blocking artifacts and improve coding gain in subband coding applications. The GLT is found to have higher coding gain and smoother synthesis basis functions than the lapped orthogonal transform (LOT). Simulation results also demonstrated that the GLT has significantly less blocking artifacts, higher peak signal-tonoise ratio (PSNR), and better visual quality than the LOT in image coding. Simplified GLT with different complexity/performance tradeoff is also studied. © 1999 IEEE.published_or_final_versio

    Role of anticausal inverses in multirate filter-banks. I. System-theoretic fundamentals

    Get PDF
    In a maximally decimated filter bank with identical decimation ratios for all channels, the perfect reconstructibility property and the nature of reconstruction filters (causality, stability, FIR property, and so on) depend on the properties of the polyphase matrix. Various properties and capabilities of the filter bank depend on the properties of the polyphase matrix as well as the nature of its inverse. In this paper we undertake a study of the types of inverses and characterize them according to their system theoretic properties (i.e., properties of state-space descriptions, McMillan degree, degree of determinant, and so forth). We find in particular that causal polyphase matrices with anticausal inverses have an important role in filter bank theory. We study their properties both for the FIR and IIR cases. Techniques for implementing anticausal IIR inverses based on state space descriptions are outlined. It is found that causal FIR matrices with anticausal FIR inverses (cafacafi) have a key role in the characterization of FIR filter banks. In a companion paper, these results are applied for the factorization of biorthogonal FIR filter banks, and a generalization of the lapped orthogonal transform called the biorthogonal lapped transform (BOLT) developed

    VHDL modeling and synthesis of the JPEG-XR inverse transform

    Get PDF
    This work presents a pipelined VHDL implementation of the inverse lapped biorthogonal transform used in the decompression process of the soon to be released JPEG-XR still image standard format. This inverse transform involves integer only calculations using lifting operations and Kronecker products. Divisions and multiplications by small integer coefficients are implemented using a bit shift and add technique resulting in a multiplier-less implementation with 736 instances of addition. When targeted to an Altera Stratix II FPGA with a 50 MHz system clock, this design is capable of completing the inverse transform of an 8400 x 6600 pixel image in less than 70 ms

    Role of anticausal inverses in multirate filter-banks. II. The FIR case, factorizations, and biorthogonal lapped transforms

    Get PDF
    For pt. I see ibid., vol.43, no.5, p.1090, 1990. In part I we studied the system-theoretic properties of discrete time transfer matrices in the context of inversion, and classified them according to the types of inverses they had. In particular, we outlined the role of causal FIR matrices with anticausal FIR inverses (abbreviated cafacafi) in the characterization of FIR perfect reconstruction (PR) filter banks. Essentially all FIR PR filter banks can be characterized by causal FIR polyphase matrices having anticausal FIR inverses. In this paper, we introduce the most general degree-one cafacafi building block, and consider the problem of factorizing cafacafi systems into these building blocks. Factorizability conditions are developed. A special class of cafacafi systems called the biorthogonal lapped transform (BOLT) is developed, and shown to be factorizable. This is a generalization of the well-known lapped orthogonal transform (LOT). Examples of unfactorizable cafacafi systems are also demonstrated. Finally it is shown that any causal FIR matrix with FIR inverse can be written as a product of a factorizable cafacafi system and a unimodular matrix

    Generalized Triangular Decomposition in Transform Coding

    Get PDF
    A general family of optimal transform coders (TCs) is introduced here based on the generalized triangular decomposition (GTD) developed by Jiang This family includes the Karhunen-Loeve transform (KLT) and the generalized version of the prediction-based lower triangular transform (PLT) introduced by Phoong and Lin as special cases. The coding gain of the entire family, with optimal bit allocation, is equal to that of the KLT and the PLT. Even though the original PLT introduced by Phoong is not applicable for vectors that are not blocked versions of scalar wide sense stationary processes, the GTD-based family includes members that are natural extensions of the PLT, and therefore also enjoy the so-called MINLAB structure of the PLT, which has the unit noise-gain property. Other special cases of the GTD-TC are the geometric mean decomposition (GMD) and the bidiagonal decomposition (BID) transform coders. The GMD-TC in particular has the property that the optimum bit allocation is a uniform allocation; this is because all its transform domain coefficients have the same variance, implying thereby that the dynamic ranges of the coefficients to be quantized are identical

    A practical approach for the design of nonuniform lapped transforms

    Get PDF
    We propose a simple method for the design of lapped transforms with nonuniform frequency resolution and good time localization. The method is a generalization of an approach previously proposed by Princen, where the nonuniform filter bank is obtained by joining uniform cosine-modulated filter banks (CMFBs) using a transition filter. We use several transition filters to obtain a near perfect-reconstruction (PR) nonuniform lapped transform with significantly reduced overall distortion. The main advantage of the proposed method is in reducing the length of the transition filters, which leads to a reduction in processing delay that can be useful for applications such as real-time audio coding

    Factorability of lossless time-varying filters and filter banks

    Get PDF
    We study the factorability of linear time-varying (LTV) lossless filters and filter banks. We give a complete characterization of all, degree-one lossless LTV systems and show that all degree-one lossless systems can be decomposed into a time-dependent unitary matrix followed by a lossless dyadic-based LTV system. The lossless dyadic-based system has several properties that make it useful in the factorization of lossless LTV systems. The traditional lapped orthogonal transform (LOT) is also generalized to the LTV case. We identify two classes of TVLOTs, namely, the invertible inverse lossless (IIL) and noninvertible inverse lossless (NIL) TVLOTs. The minimum number of delays required to implement a TVLOT is shown to be a nondecreasing function of time, and it is a constant if and only if the TVLOT is IIL. We also show that all IIL TVLOTs can be factorized uniquely into the proposed degree-one lossless building block. The factorization is minimal in terms of the delay elements. For NIL TVLOTs, there are factorable and unfactorable examples. Both necessary and sufficient conditions for the factorability of lossless LTV systems are given. We also introduce the concept of strong eternal reachability (SER) and strong eternal observability (SEO) of LTV systems. The SER and SEO of an implementation of LTV systems imply the minimality of the structure. Using these concepts, we are able to show that the cascade structure for a factorable IIL LTV system is minimal. That implies that if a IIL LTV system is factorable in terms of the lossless dyadic-based building blocks, the factorization is minimal in terms of delays as well as the number of building blocks. We also prove the BIBO stability of the LTV normalized IIR lattice

    Theory of optimal orthonormal subband coders

    Get PDF
    The theory of the orthogonal transform coder and methods for its optimal design have been known for a long time. We derive a set of necessary and sufficient conditions for the coding-gain optimality of an orthonormal subband coder for given input statistics. We also show how these conditions can be satisfied by the construction of a sequence of optimal compaction filters one at a time. Several theoretical properties of optimal compaction filters and optimal subband coders are then derived, especially pertaining to behavior as the number of subbands increases. Significant theoretical differences between optimum subband coders, transform coders, and predictive coders are summarized. Finally, conditions are presented under which optimal orthonormal subband coders yield as much coding gain as biorthogonal ones for a fixed number of subbands

    Results on optimal biorthogonal filter banks

    Get PDF
    Optimization of filter banks for specific input statistics has been of interest in the theory and practice of subband coding. For the case of orthonormal filter banks with infinite order and uniform decimation, the problem has been completely solved in recent years. For the case of biorthogonal filter banks, significant progress has been made recently, although a number of issues still remain to be addressed. In this paper we briefly review the orthonormal case, and then present several new results for the biorthogonal case. All discussions pertain to the infinite order (ideal filter) case. The current status of research as well as some of the unsolved problems are described
    • …
    corecore