102 research outputs found

    Designing A Composite Dictionary Adaptively From Joint Examples

    Full text link
    We study the complementary behaviors of external and internal examples in image restoration, and are motivated to formulate a composite dictionary design framework. The composite dictionary consists of the global part learned from external examples, and the sample-specific part learned from internal examples. The dictionary atoms in both parts are further adaptively weighted to emphasize their model statistics. Experiments demonstrate that the joint utilization of external and internal examples leads to substantial improvements, with successful applications in image denoising and super resolution

    "Zero-Shot" Super-Resolution using Deep Internal Learning

    Full text link
    Deep Learning has led to a dramatic leap in Super-Resolution (SR) performance in the past few years. However, being supervised, these SR methods are restricted to specific training data, where the acquisition of the low-resolution (LR) images from their high-resolution (HR) counterparts is predetermined (e.g., bicubic downscaling), without any distracting artifacts (e.g., sensor noise, image compression, non-ideal PSF, etc). Real LR images, however, rarely obey these restrictions, resulting in poor SR results by SotA (State of the Art) methods. In this paper we introduce "Zero-Shot" SR, which exploits the power of Deep Learning, but does not rely on prior training. We exploit the internal recurrence of information inside a single image, and train a small image-specific CNN at test time, on examples extracted solely from the input image itself. As such, it can adapt itself to different settings per image. This allows to perform SR of real old photos, noisy images, biological data, and other images where the acquisition process is unknown or non-ideal. On such images, our method outperforms SotA CNN-based SR methods, as well as previous unsupervised SR methods. To the best of our knowledge, this is the first unsupervised CNN-based SR method

    A Joint Intensity and Depth Co-Sparse Analysis Model for Depth Map Super-Resolution

    Full text link
    High-resolution depth maps can be inferred from low-resolution depth measurements and an additional high-resolution intensity image of the same scene. To that end, we introduce a bimodal co-sparse analysis model, which is able to capture the interdependency of registered intensity and depth information. This model is based on the assumption that the co-supports of corresponding bimodal image structures are aligned when computed by a suitable pair of analysis operators. No analytic form of such operators exist and we propose a method for learning them from a set of registered training signals. This learning process is done offline and returns a bimodal analysis operator that is universally applicable to natural scenes. We use this to exploit the bimodal co-sparse analysis model as a prior for solving inverse problems, which leads to an efficient algorithm for depth map super-resolution.Comment: 13 pages, 4 figure

    Seven ways to improve example-based single image super resolution

    Full text link
    In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanced prediction by consistency check, and 7) context reasoning. We validate our seven techniques on standard SR benchmarks (i.e. Set5, Set14, B100) and methods (i.e. A+, SRCNN, ANR, Zeyde, Yang) and achieve substantial improvements.The techniques are widely applicable and require no changes or only minor adjustments of the SR methods. Moreover, our Improved A+ (IA) method sets new state-of-the-art results outperforming A+ by up to 0.9dB on average PSNR whilst maintaining a low time complexity.Comment: 9 page

    A Fully Progressive Approach to Single-Image Super-Resolution

    Full text link
    Recent deep learning approaches to single image super-resolution have achieved impressive results in terms of traditional error measures and perceptual quality. However, in each case it remains challenging to achieve high quality results for large upsampling factors. To this end, we propose a method (ProSR) that is progressive both in architecture and training: the network upsamples an image in intermediate steps, while the learning process is organized from easy to hard, as is done in curriculum learning. To obtain more photorealistic results, we design a generative adversarial network (GAN), named ProGanSR, that follows the same progressive multi-scale design principle. This not only allows to scale well to high upsampling factors (e.g., 8x) but constitutes a principled multi-scale approach that increases the reconstruction quality for all upsampling factors simultaneously. In particular ProSR ranks 2nd in terms of SSIM and 4th in terms of PSNR in the NTIRE2018 SISR challenge [34]. Compared to the top-ranking team, our model is marginally lower, but runs 5 times faster
    • …
    corecore