55,871 research outputs found

    Image and Volume Segmentation by Water Flow

    No full text
    A general framework for image segmentation is presented in this paper, based on the paradigm of water flow. The major water flow attributes like water pressure, surface tension and capillary force are defined in the context of force field generation and make the model adaptable to topological and geometrical changes. A flow-stopping image functional combining edge- and region-based forces is introduced to produce capability for both range and accuracy. The method is assessed qualitatively and quantitatively on synthetic and natural images. It is shown that the new approach can segment objects with complex shapes or weak-contrasted boundaries, and has good immunity to noise. The operator is also extended to 3-D, and is successfully applied to medical volume segmentation

    Quantification of sub-resolution porosity in carbonate rocks by applying high-salinity contrast brine using X-ray microtomography differential imaging

    Get PDF
    Characterisation of the pore space in carbonate reservoirs and aquifers is of utmost importance in a number of applications such as enhanced oil recovery, geological carbon storage and contaminant transport. We present a new experimental methodology that uses high-salinity contrast brine and differential imaging acquired by X-ray tomography to non-invasively obtain three-dimensional spatially resolved information on porosity and connectivity of two rock samples, Portland and Estaillades limestones, including sub-resolution micro-porosity. We demonstrate that by injecting 30 wt% KI brine solution, a sufficiently high phase contrast can be achieved allowing accurate three-phase segmentation based on differential imaging. This results in spatially resolved maps of the solid grain phase, sub-resolution micro-pores within the grains, and macro-pores. The total porosity values from the three-phase segmentation for two carbonate rock samples are shown to be in good agreement with Helium porosity measurements. Furthermore, our flow-based method allows for an accurate estimate of pore connectivity and a distribution of porosity within the sub-resolution pores

    On Using Physical Analogies for Feature and Shape Extraction in Computer Vision

    No full text
    There is a rich literature of approaches to image feature extraction in computer vision. Many sophisticated approaches exist for low- and high-level feature extraction but can be complex to implement with parameter choice guided by experimentation, but impeded by speed of computation. We have developed new ways to extract features based on notional use of physical paradigms, with parameterisation that is more familiar to a scientifically-trained user, aiming to make best use of computational resource. We describe how analogies based on gravitational force can be used for low-level analysis, whilst analogies of water flow and heat can be deployed to achieve high-level smooth shape detection. These new approaches to arbitrary shape extraction are compared with standard state-of-art approaches by curve evolution. There is no comparator operator to our use of gravitational force. We also aim to show that the implementation is consistent with the original motivations for these techniques and so contend that the exploration of physical paradigms offers a promising new avenue for new approaches to feature extraction in computer vision

    Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Get PDF
    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 µm, 6.2 µm, 8.3 µm and 10.2 µm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 µm) to lower resolutions (6.2 µm, 8.3 µm and 10.2 µm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data

    Challenges in imaging and predictive modeling of rhizosphere processes

    Get PDF
    Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes

    Dynamic pore-scale reservoir-condition imaging of reaction in carbonates using synchrotron fast tomography

    Get PDF
    Synchrotron fast tomography was used to dynamically image dissolution of limestone in the presence of CO2-saturated brine at reservoir conditions. 100 scans were taken at a 6.1 µm resolution over a period of 2 hours. Underground storage permanence is a major concern for carbon capture and storage. Pumping CO2 into carbonate reservoirs has the potential to dissolve geologic seals and allow CO2 to escape. However, the dissolution processes at reservoir conditions are poorly understood. Thus, time-resolved experiments are needed to observe and predict the nature and rate of dissolution at the pore scale. Synchrotron fast tomography is a method of taking high-resolution time-resolved images of complex pore structures much more quickly than traditional µ-CT . The Diamond Lightsource Pink Beam was used to dynamically image dissolution of limestone in the presence of CO2-saturated brine at reservoir conditions. 100 scans were taken at a 6.1 µm resolution over a period of 2 hours. The images were segmented and the porosity and permeability were measured using image analysis and network extraction. Porosity increased uniformly along the length of the sample; however, the rate of increase of both porosity and permeability slowed at later times
    • …
    corecore