1,296 research outputs found

    Controlling Perceptual Factors in Neural Style Transfer

    Full text link
    Neural Style Transfer has shown very exciting results enabling new forms of image manipulation. Here we extend the existing method to introduce control over spatial location, colour information and across spatial scale. We demonstrate how this enhances the method by allowing high-resolution controlled stylisation and helps to alleviate common failure cases such as applying ground textures to sky regions. Furthermore, by decomposing style into these perceptual factors we enable the combination of style information from multiple sources to generate new, perceptually appealing styles from existing ones. We also describe how these methods can be used to more efficiently produce large size, high-quality stylisation. Finally we show how the introduced control measures can be applied in recent methods for Fast Neural Style Transfer.Comment: Accepted at CVPR201

    FastCLIPstyler: Optimisation-free Text-based Image Style Transfer Using Style Representations

    Full text link
    In recent years, language-driven artistic style transfer has emerged as a new type of style transfer technique, eliminating the need for a reference style image by using natural language descriptions of the style. The first model to achieve this, called CLIPstyler, has demonstrated impressive stylisation results. However, its lengthy optimisation procedure at runtime for each query limits its suitability for many practical applications. In this work, we present FastCLIPstyler, a generalised text-based image style transfer model capable of stylising images in a single forward pass for arbitrary text inputs. Furthermore, we introduce EdgeCLIPstyler, a lightweight model designed for compatibility with resource-constrained devices. Through quantitative and qualitative comparisons with state-of-the-art approaches, we demonstrate that our models achieve superior stylisation quality based on measurable metrics while offering significantly improved runtime efficiency, particularly on edge devices.Comment: Accepted at the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024
    • …
    corecore