3,954,798 research outputs found

    Mars Image Analysis

    Get PDF
    This lesson plan details an activity designed to put students in the role of scientists in analyzing the geological processes that occur on terrestrial planets - i.e. Earth and Mars. Students will use images from NASA’s Thermal Emission Imaging System (THEMIS) camera onboard the Mars Odyssey spacecraft to evaluate the geologic history and present conditions on Mars. This activity will enable students to understand the geological history of Mars by using what they understand about Earth's processes. Educational levels: Intermediate elementary, Middle school, High school

    Image analysis in heat transfer.

    Get PDF
    Cílem této práce je porovnat vysoko tlaké vodní trysky a vysvětlit čtenáři použité metody. Matematické metody použité v programu jsou také uvedeny v této práci.The object of this work is to describe and compare water tracks of high pressure nozzles and explain image processing methods to the reader. Mathematical methods used in the program for getting properties of dierent jets are also present.

    Difference Image Analysis of Galactic Microlensing I. Data Analysis

    Full text link
    This is a preliminary report on the application of Difference Image Analysis (DIA) to galactic bulge images. The aim of this analysis is to increase the sensitivity to the detection of gravitational microlensing. We discuss how the DIA technique simplifies the process of discovering microlensing events by detecting only objects which have variable flux. We illustrate how the DIA technique is not limited to detection of so called ``pixel lensing'' events, but can also be used to improve photometry for classical microlensing events by removing the effects of blending. We will present a method whereby DIA can be used to reveal the true unblended colours, positions and light curves of microlensing events. We discuss the need for a technique to obtain the accurate microlensing time scales from blended sources, and present a possible solution to this problem using the existing HST colour magnitude diagrams of the galactic bulge and LMC. The use of such a solution with both classical and pixel microlensing searches is discussed. We show that one of the major causes of systematic noise in DIA is differential refraction. A technique for removing this systematic by effectively registering images to a common airmass is presented. Improvements to commonly used image differencing techniques are discussed.Comment: 18 pages, 8 figures, uses AAS LaTEX 4.0, To appear in Astrophysical Journa

    Stereo image analysis using connected operators

    Get PDF
    Connected operators are increasingly used in image processing due to their properties of simplifying the image with various criteria, without loosing contour's information. These properties are related to the connected operator approach that either preserves or completely eliminates a determined connected component, according to an established criterion of analysis. In this paper we will define a new connected operator for stereo images. The goal is to simplify one of the images (left) in the sense that the operator will eliminate the image components that are not present at a determined location in the other image (right). This filter let us select in a stereo image, objects as a function of their distance from the observer (for instance used in auto guided vehicles).Peer ReviewedPostprint (published version

    Spatiotemporal Barcodes for Image Sequence Analysis

    Get PDF
    Taking as input a time-varying sequence of two-dimensional (2D) binary images, we develop an algorithm for computing a spatiotemporal 0–barcode encoding lifetime of connected components on the image sequence over time. This information may not coincide with the one provided by the 0–barcode encoding the 0–persistent homology, since the latter does not respect the principle that it is not possible to move backwards in time. A cell complex K is computed from the given sequence, being the cells of K classified as spatial or temporal depending on whether they connect two consecutive frames or not. A spatiotemporal path is defined as a sequence of edges of K forming a path such that two edges of the path cannot connect the same two consecutive frames. In our algorithm, for each vertex v ∈ K, a spatiotemporal path from v to the “oldest” spatiotemporally-connected vertex is computed and the corresponding spatiotemporal 0–bar is added to the spatiotemporal 0–barcode.Junta de Andalucía FQM-369Ministerio de Economía y Competitividad MTM2012-3270
    corecore