26 research outputs found

    Controllable Image Generation via Collage Representations

    Full text link
    Recent advances in conditional generative image models have enabled impressive results. On the one hand, text-based conditional models have achieved remarkable generation quality, by leveraging large-scale datasets of image-text pairs. To enable fine-grained controllability, however, text-based models require long prompts, whose details may be ignored by the model. On the other hand, layout-based conditional models have also witnessed significant advances. These models rely on bounding boxes or segmentation maps for precise spatial conditioning in combination with coarse semantic labels. The semantic labels, however, cannot be used to express detailed appearance characteristics. In this paper, we approach fine-grained scene controllability through image collages which allow a rich visual description of the desired scene as well as the appearance and location of the objects therein, without the need of class nor attribute labels. We introduce "mixing and matching scenes" (M&Ms), an approach that consists of an adversarially trained generative image model which is conditioned on appearance features and spatial positions of the different elements in a collage, and integrates these into a coherent image. We train our model on the OpenImages (OI) dataset and evaluate it on collages derived from OI and MS-COCO datasets. Our experiments on the OI dataset show that M&Ms outperforms baselines in terms of fine-grained scene controllability while being very competitive in terms of image quality and sample diversity. On the MS-COCO dataset, we highlight the generalization ability of our model by outperforming DALL-E in terms of the zero-shot FID metric, despite using two magnitudes fewer parameters and data. Collage based generative models have the potential to advance content creation in an efficient and effective way as they are intuitive to use and yield high quality generations

    Enhancing Person Synthesis in Complex Scenes via Intrinsic and Contextual Structure Modeling

    Get PDF
    The Generative Adversarial Network (GAN) and its variations have enabled high quality image generation. However, generating reasonable persons in complex scenes (such as MS-COCO images) remains challenging. We propose a novel structure-based and context-aware approach to enhance the person synthesis in complex scenes. The method can success fully predict the person pose and face structures while respecting the weak layout-based context, then leverage the structures to refine the person appearance. Our method involves three parts. First, a memory-based model is used to encode person intrinsic structures including pose and face key points. Second, a context-aware model infers the conditional person structures from the layout context. Third, the structure-guided personappearancerefinersfurtherenhancethefinalimagegeneration.Ourexperiments present convincing person generation results in layout-to-image tasks on a challenging dataset. Person-related evaluations demonstrate our method achieves state-of-the-art performance, especially on person accuracy and face detection metrics

    Auto-regressive Image Synthesis with Integrated Quantization

    Full text link
    Deep generative models have achieved conspicuous progress in realistic image synthesis with multifarious conditional inputs, while generating diverse yet high-fidelity images remains a grand challenge in conditional image generation. This paper presents a versatile framework for conditional image generation which incorporates the inductive bias of CNNs and powerful sequence modeling of auto-regression that naturally leads to diverse image generation. Instead of independently quantizing the features of multiple domains as in prior research, we design an integrated quantization scheme with a variational regularizer that mingles the feature discretization in multiple domains, and markedly boosts the auto-regressive modeling performance. Notably, the variational regularizer enables to regularize feature distributions in incomparable latent spaces by penalizing the intra-domain variations of distributions. In addition, we design a Gumbel sampling strategy that allows to incorporate distribution uncertainty into the auto-regressive training procedure. The Gumbel sampling substantially mitigates the exposure bias that often incurs misalignment between the training and inference stages and severely impairs the inference performance. Extensive experiments over multiple conditional image generation tasks show that our method achieves superior diverse image generation performance qualitatively and quantitatively as compared with the state-of-the-art.Comment: Accepted to ECCV 2022 as Oral Presentatio

    DiffBlender: Scalable and Composable Multimodal Text-to-Image Diffusion Models

    Full text link
    The recent progress in diffusion-based text-to-image generation models has significantly expanded generative capabilities via conditioning the text descriptions. However, since relying solely on text prompts is still restrictive for fine-grained customization, we aim to extend the boundaries of conditional generation to incorporate diverse types of modalities, e.g., sketch, box, and style embedding, simultaneously. We thus design a multimodal text-to-image diffusion model, coined as DiffBlender, that achieves the aforementioned goal in a single model by training only a few small hypernetworks. DiffBlender facilitates a convenient scaling of input modalities, without altering the parameters of an existing large-scale generative model to retain its well-established knowledge. Furthermore, our study sets new standards for multimodal generation by conducting quantitative and qualitative comparisons with existing approaches. By diversifying the channels of conditioning modalities, DiffBlender faithfully reflects the provided information or, in its absence, creates imaginative generation.Comment: 18 pages, 16 figures, and 3 table
    corecore