3 research outputs found

    Focus Quality Assessment of High-Throughput Whole Slide Imaging in Digital Pathology

    Full text link
    One of the challenges facing the adoption of digital pathology workflows for clinical use is the need for automated quality control. As the scanners sometimes determine focus inaccurately, the resultant image blur deteriorates the scanned slide to the point of being unusable. Also, the scanned slide images tend to be extremely large when scanned at greater or equal 20X image resolution. Hence, for digital pathology to be clinically useful, it is necessary to use computational tools to quickly and accurately quantify the image focus quality and determine whether an image needs to be re-scanned. We propose a no-reference focus quality assessment metric specifically for digital pathology images, that operates by using a sum of even-derivative filter bases to synthesize a human visual system-like kernel, which is modeled as the inverse of the lens' point spread function. This kernel is then applied to a digital pathology image to modify high-frequency image information deteriorated by the scanner's optics and quantify the focus quality at the patch level. We show in several experiments that our method correlates better with ground-truth zz-level data than other methods, and is more computationally efficient. We also extend our method to generate a local slide-level focus quality heatmap, which can be used for automated slide quality control, and demonstrate the utility of our method for clinical scan quality control by comparison with subjective slide quality scores.Comment: 10 pages, This work has been submitted to the IEEE for possible publicatio

    Learning-Based Quality Assessment for Image Super-Resolution

    Full text link
    Image Super-Resolution (SR) techniques improve visual quality by enhancing the spatial resolution of images. Quality evaluation metrics play a critical role in comparing and optimizing SR algorithms, but current metrics achieve only limited success, largely due to the lack of large-scale quality databases, which are essential for learning accurate and robust SR quality metrics. In this work, we first build a large-scale SR image database using a novel semi-automatic labeling approach, which allows us to label a large number of images with manageable human workload. The resulting SR Image quality database with Semi-Automatic Ratings (SISAR), so far the largest of SR-IQA database, contains 8,400 images of 100 natural scenes. We train an end-to-end Deep Image SR Quality (DISQ) model by employing two-stream Deep Neural Networks (DNNs) for feature extraction, followed by a feature fusion network for quality prediction. Experimental results demonstrate that the proposed method outperforms state-of-the-art metrics and achieves promising generalization performance in cross-database tests. The SISAR database and DISQ model will be made publicly available to facilitate reproducible research

    Encoding Visual Sensitivity by MaxPol Convolution Filters for Image Sharpness Assessment

    Full text link
    In this paper, we propose a novel design of Human Visual System (HVS) response in a convolution filter form to decompose meaningful features that are closely tied with image sharpness level. No-reference (NR) Image sharpness assessment (ISA) techniques have emerged as the standard of image quality assessment in diverse imaging applications. Despite their high correlation with subjective scoring, they are challenging for practical considerations due to high computational cost and lack of scalability across different image blurs. We bridge this gap by synthesizing the HVS response as a linear combination of Finite Impulse Response (FIR) derivative filters to boost the falloff of high band frequency magnitudes in natural imaging paradigm. The numerical implementation of the HVS filter is carried out with MaxPol filter library that can be arbitrarily set for any differential orders and cutoff frequencies to balance out the estimation of informative features and noise sensitivities. We then design an innovative NR-ISA metric called `HVS-MaxPol' that (a) requires minimal computational cost, (b) produce high correlation accuracy with image blurriness, and (c) scales to assess synthetic and natural image blur. Specifically, the synthetic blur images are constructed by blurring the raw images using Gaussian filter, while natural blur is observed from real-life application such as motion, out-of-focus, etc. Furthermore, we create a natural benchmark database in digital pathology for validation of image focus quality in whole slide imaging systems called `FocusPath' consisting of 864 blurred images. Thorough experiments are designed to test and validate the efficiency of HVS-MaxPol across different blur databases and state-of-the-art NR-ISA metrics. The experiment result indicates that our metric has the best overall performance with respect to speed, accuracy and scalability.Comment: 15 page
    corecore