2,225 research outputs found

    Automated 5-year Mortality Prediction using Deep Learning and Radiomics Features from Chest Computed Tomography

    Full text link
    We propose new methods for the prediction of 5-year mortality in elderly individuals using chest computed tomography (CT). The methods consist of a classifier that performs this prediction using a set of features extracted from the CT image and segmentation maps of multiple anatomic structures. We explore two approaches: 1) a unified framework based on deep learning, where features and classifier are automatically learned in a single optimisation process; and 2) a multi-stage framework based on the design and selection/extraction of hand-crafted radiomics features, followed by the classifier learning process. Experimental results, based on a dataset of 48 annotated chest CTs, show that the deep learning model produces a mean 5-year mortality prediction accuracy of 68.5%, while radiomics produces a mean accuracy that varies between 56% to 66% (depending on the feature selection/extraction method and classifier). The successful development of the proposed models has the potential to make a profound impact in preventive and personalised healthcare.Comment: 9 page

    Fair comparison of skin detection approaches on publicly available datasets

    Full text link
    Skin detection is the process of discriminating skin and non-skin regions in a digital image and it is widely used in several applications ranging from hand gesture analysis to track body parts and face detection. Skin detection is a challenging problem which has drawn extensive attention from the research community, nevertheless a fair comparison among approaches is very difficult due to the lack of a common benchmark and a unified testing protocol. In this work, we investigate the most recent researches in this field and we propose a fair comparison among approaches using several different datasets. The major contributions of this work are an exhaustive literature review of skin color detection approaches, a framework to evaluate and combine different skin detector approaches, whose source code is made freely available for future research, and an extensive experimental comparison among several recent methods which have also been used to define an ensemble that works well in many different problems. Experiments are carried out in 10 different datasets including more than 10000 labelled images: experimental results confirm that the best method here proposed obtains a very good performance with respect to other stand-alone approaches, without requiring ad hoc parameter tuning. A MATLAB version of the framework for testing and of the methods proposed in this paper will be freely available from https://github.com/LorisNann

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Methods for Detecting and Classifying Weeds, Diseases and Fruits Using AI to Improve the Sustainability of Agricultural Crops: A Review

    Get PDF
    The rapid growth of the world’s population has put significant pressure on agriculture to meet the increasing demand for food. In this context, agriculture faces multiple challenges, one of which is weed management. While herbicides have traditionally been used to control weed growth, their excessive and random use can lead to environmental pollution and herbicide resistance. To address these challenges, in the agricultural industry, deep learning models have become a possible tool for decision-making by using massive amounts of information collected from smart farm sensors. However, agriculture’s varied environments pose a challenge to testing and adopting new technology effectively. This study reviews recent advances in deep learning models and methods for detecting and classifying weeds to improve the sustainability of agricultural crops. The study compares performance metrics such as recall, accuracy, F1-Score, and precision, and highlights the adoption of novel techniques, such as attention mechanisms, single-stage detection models, and new lightweight models, which can enhance the model’s performance. The use of deep learning methods in weed detection and classification has shown great potential in improving crop yields and reducing adverse environmental impacts of agriculture. The reduction in herbicide use can prevent pollution of water, food, land, and the ecosystem and avoid the resistance of weeds to chemicals. This can help mitigate and adapt to climate change by minimizing agriculture’s environmental impact and improving the sustainability of the agricultural sector. In addition to discussing recent advances, this study also highlights the challenges faced in adopting new technology in agriculture and proposes novel techniques to enhance the performance of deep learning models. The study provides valuable insights into the latest advances and challenges in process systems engineering and technology for agricultural activities

    Machine learning and feature selection methods for egfr mutation status prediction in lung cancer

    Get PDF
    The evolution of personalized medicine has changed the therapeutic strategy from classical chemotherapy and radiotherapy to a genetic modification targeted therapy, and although biopsy is the traditional method to genetically characterize lung cancer tumor, it is an invasive and painful procedure for the patient. Nodule image features extracted from computed tomography (CT) scans have been used to create machine learning models that predict gene mutation status in a noninvasive, fast, and easy-to-use manner. However, recent studies have shown that radiomic features extracted from an extended region of interest (ROI) beyond the tumor, might be more relevant to predict the mutation status in lung cancer, and consequently may be used to significantly decrease the mortality rate of patients battling this condition. In this work, we investigated the relation between image phenotypes and the mutation status of Epidermal Growth Factor Receptor (EGFR), the most frequently mutated gene in lung cancer with several approved targeted-therapies, using radiomic features extracted from the lung containing the nodule. A variety of linear, nonlinear, and ensemble predictive classification models, along with several feature selection methods, were used to classify the binary outcome of wild-type or mutant EGFR mutation status. The results show that a comprehensive approach using a ROI that included the lung with nodule can capture relevant information and successfully predict the EGFR mutation status with increased performance compared to local nodule analyses. Linear Support Vector Machine, Elastic Net, and Logistic Regression, combined with the Principal Component Analysis feature selection method implemented with 70% of variance in the feature set, were the best-performing classifiers, reaching Area Under the Curve (AUC) values ranging from 0.725 to 0.737. This approach that exploits a holistic analysis indicates that information from more extensive regions of the lung containing the nodule allows a more complete lung cancer characterization and should be considered in future radiogenomic studies.This work is financed by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation—COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT—Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-030263

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Analysis and automated classification of images of blood cells to diagnose acute lymphoblastic leukemia

    Get PDF
    Analysis of white blood cells from blood can help to detect Acute Lymphoblastic Leukemia, a potentially fatal blood cancer if left untreated. The morphological analysis of blood cells images is typically performed manually by an expert; however, this method has numerous drawbacks, including slow analysis, low precision, and the results depend on the operator’s skill. We have developed and present here an automated method for the identification and classification of white blood cells using microscopic images of peripheral blood smears. Once the image has been obtained, we propose describing it using brightness, contrast, and micro-contour orientation histograms. Each of these descriptions provides a coding of the image, which in turn provides n parameters. The extracted characteristics are presented to an encoder’s input. The encoder generates a high-dimensional binary output vector, which is presented to the input of the neural classifier. This paper presents the performance of one classifier, the Random Threshold Classifier. The classifier’s output is the recognized class, which is either a healthy cell or an Acute Lymphoblastic Leukemia-affected cell. As shown below, the proposed neural Random Threshold Classifier achieved a recognition rate of 98.3 % when the data has partitioned on 80 % training set and 20 % testing set for. Our system of image recognition is evaluated using the public dataset of peripheral blood samples from Acute Lymphoblastic Leukemia Image Database. It is important to mention that our system could be implemented as a computational tool for detection of other diseases, where blood cells undergo alterations, such as Covid-1
    • …
    corecore