4 research outputs found

    Automatic non-linear video editing for home video collections

    Get PDF
    The video editing process consists of deciding what elements to retain, delete, or combine from various video sources so that they come together in an organized, logical, and visually pleasing manner. Before the digital era, non-linear editing involved the arduous process of physically cutting and splicing video tapes, and was restricted to the movie industry and a few video enthusiasts. Today, when digital cameras and camcorders have made large personal video collections commonplace, non-linear video editing has gained renewed importance and relevance. Almost all available video editing systems today are dependent on considerable user interaction to produce coherent edited videos. In this work, we describe an automatic non-linear video editing system for generating coherent movies from a collection of unedited personal videos. Our thesis is that computing image-level visual similarity in an appropriate manner forms a good basis for automatic non-linear video editing. To our knowledge, this is a novel approach to solving this problem. The generation of output video from the system is guided by one or more input keyframes from the user, which guide the content of the output video. The output video is generated in a manner such that it is non-repetitive and follows the dynamics of the input videos. When no input keyframes are provided, our system generates "video textures" with the content of the output chosen at random. Our system demonstrates promising results on large video collections and is a first step towards increased automation in non-linear video editin

    Image Retrieval Using Scale-Space Matching

    No full text
    The retrieval of images from a large database of images is an important and emerging area of research. Here, a technique to retrieve images based on appearance that works effectively across large changes of scale is proposed. The database is initially filtered with derivatives of a Gaussian at several scales. A user defined template is then created from an image of an object similar to those being sought. The template is also filtered using Gaussian derivatives. The template is then matched with the filter outputs of the database images and the matches ranked according to the match score. Experiments demonstrate the technique on a number of images in a database. No prior segmentation of the images is required and the technique works with viewpoint changes up to 20 degrees and illumination changes. 1 Introduction The advent of multi-media and large image collections in several different domains brings forth a necessity for image retrieval systems. These systems will This work was s..

    Image Retrieval Using Scale-Space Matching

    No full text
    The retrieval of images from a large database of images is an important and emerging area of research. Here, a technique to retrieve images based on appearance that works effectively across large changes of scale is proposed. The database is initially filtered with derivatives of a Gaussian at several scales. A user defined template is then created from an image of an object similar to those being sought. The template is also filtered using Gaussian derivatives. The template is then matched with the filter outputs of the database images and the matches ranked according to the match score. Experiments demonstrate the technique on a number of images in a database. No prior segmentation of the images is required and the technique works with viewpoint changes up to 20 degrees and illumination changes. 1 Introduction The advent of multi-media and large image collections in several different domains brings forth a necessity for image retrieval systems. These systems will respond to visual ..

    Image retrieval using scale-space matching

    No full text
    corecore