1,969 research outputs found

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    Integrated self-consistent macro-micro traffic flow modeling and calibration framework based on trajectory data

    Get PDF
    Calibrating microscopic car-following (CF) models is crucial in traffic flow theory as it allows for accurate reproduction and investigation of traffic behavior and phenomena. Typically, the calibration procedure is a complicated, non-convex optimization issue. When the traffic state is in equilibrium, the macroscopic flow model can be derived analytically from the corresponding CF model. In contrast to the microscopic CF model, calibrated based on trajectory data, the macroscopic representation of the fundamental diagram (FD) primarily adopts loop detector data for calibration. The different calibration approaches at the macro- and microscopic levels may lead to misaligned parameters with identical practical meanings in both macro- and micro-traffic models. This inconsistency arises from the difference between the parameter calibration processes used in macro- and microscopic traffic flow models. Hence, this study proposes an integrated multiresolution traffic flow modeling framework using the same trajectory data for parameter calibration based on the self-consistency concept. This framework incorporates multiple objective functions in the macro- and micro-dimensions. To expeditiously execute the proposed framework, an improved metaheuristic multi-objective optimization algorithm is presented that employs multiple enhancement strategies. Additionally, a deep learning technique based on attention mechanisms was used to extract stationary-state traffic data for the macroscopic calibration process, instead of directly using the entire aggregated data. We conducted experiments using real-world and synthetic trajectory data to validate our self-consistent calibration framework

    Unsupervised classification to improve the quality of a bird song recording dataset

    Full text link
    Open audio databases such as Xeno-Canto are widely used to build datasets to explore bird song repertoire or to train models for automatic bird sound classification by deep learning algorithms. However, such databases suffer from the fact that bird sounds are weakly labelled: a species name is attributed to each audio recording without timestamps that provide the temporal localization of the bird song of interest. Manual annotations can solve this issue, but they are time consuming, expert-dependent, and cannot run on large datasets. Another solution consists in using a labelling function that automatically segments audio recordings before assigning a label to each segmented audio sample. Although labelling functions were introduced to expedite strong label assignment, their classification performance remains mostly unknown. To address this issue and reduce label noise (wrong label assignment) in large bird song datasets, we introduce a data-centric novel labelling function composed of three successive steps: 1) time-frequency sound unit segmentation, 2) feature computation for each sound unit, and 3) classification of each sound unit as bird song or noise with either an unsupervised DBSCAN algorithm or the supervised BirdNET neural network. The labelling function was optimized, validated, and tested on the songs of 44 West-Palearctic common bird species. We first showed that the segmentation of bird songs alone aggregated from 10% to 83% of label noise depending on the species. We also demonstrated that our labelling function was able to significantly reduce the initial label noise present in the dataset by up to a factor of three. Finally, we discuss different opportunities to design suitable labelling functions to build high-quality animal vocalizations with minimum expert annotation effort

    Scalable Exploration of Complex Objects and Environments Beyond Plain Visual Replication​

    Get PDF
    Digital multimedia content and presentation means are rapidly increasing their sophistication and are now capable of describing detailed representations of the physical world. 3D exploration experiences allow people to appreciate, understand and interact with intrinsically virtual objects. Communicating information on objects requires the ability to explore them under different angles, as well as to mix highly photorealistic or illustrative presentations of the object themselves with additional data that provides additional insights on these objects, typically represented in the form of annotations. Effectively providing these capabilities requires the solution of important problems in visualization and user interaction. In this thesis, I studied these problems in the cultural heritage-computing-domain, focusing on the very common and important special case of mostly planar, but visually, geometrically, and semantically rich objects. These could be generally roughly flat objects with a standard frontal viewing direction (e.g., paintings, inscriptions, bas-reliefs), as well as visualizations of fully 3D objects from a particular point of views (e.g., canonical views of buildings or statues). Selecting a precise application domain and a specific presentation mode allowed me to concentrate on the well defined use-case of the exploration of annotated relightable stratigraphic models (in particular, for local and remote museum presentation). My main results and contributions to the state of the art have been a novel technique for interactively controlling visualization lenses while automatically maintaining good focus-and-context parameters, a novel approach for avoiding clutter in an annotated model and for guiding users towards interesting areas, and a method for structuring audio-visual object annotations into a graph and for using that graph to improve guidance and support storytelling and automated tours. We demonstrated the effectiveness and potential of our techniques by performing interactive exploration sessions on various screen sizes and types ranging from desktop devices to large-screen displays for a walk-up-and-use museum installation. KEYWORDS - Computer Graphics, Human-Computer Interaction, Interactive Lenses, Focus-and-Context, Annotated Models, Cultural Heritage Computing

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Efficient 3D Reconstruction, Streaming and Visualization of Static and Dynamic Scene Parts for Multi-client Live-telepresence in Large-scale Environments

    Full text link
    Despite the impressive progress of telepresence systems for room-scale scenes with static and dynamic scene entities, expanding their capabilities to scenarios with larger dynamic environments beyond a fixed size of a few square-meters remains challenging. In this paper, we aim at sharing 3D live-telepresence experiences in large-scale environments beyond room scale with both static and dynamic scene entities at practical bandwidth requirements only based on light-weight scene capture with a single moving consumer-grade RGB-D camera. To this end, we present a system which is built upon a novel hybrid volumetric scene representation in terms of the combination of a voxel-based scene representation for the static contents, that not only stores the reconstructed surface geometry but also contains information about the object semantics as well as their accumulated dynamic movement over time, and a point-cloud-based representation for dynamic scene parts, where the respective separation from static parts is achieved based on semantic and instance information extracted for the input frames. With an independent yet simultaneous streaming of both static and dynamic content, where we seamlessly integrate potentially moving but currently static scene entities in the static model until they are becoming dynamic again, as well as the fusion of static and dynamic data at the remote client, our system is able to achieve VR-based live-telepresence at close to real-time rates. Our evaluation demonstrates the potential of our novel approach in terms of visual quality, performance, and ablation studies regarding involved design choices

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Enhanced average for event-related potential analysis using dynamic time warping

    Get PDF
    Electroencephalography (EEG) provides a way to understand, and evaluate neurotransmission. In this context, time-locked EEG activity or event-related potentials (ERPs) are often used to capture neural activity related to specific mental processes. Normally, they are considered on the basis of averages across a number of trials. However, there exist notable variability in latency jitter, jitter, and amplitude, across trials, and, also, across users; this causes the average ERP waveform to blur, and, furthermore, diminish the amplitude of underlying waves. For these reasons, a strategy is proposed for obtaining ERP waveforms based on dynamic time warping (DTW) to adapt, and adjust individual trials to the averaged ERP, previously calculated, to build an enhanced average by making use of these warped signals. At the sight of the experiments carried out on the behaviour of the proposed scheme using publicly available datasets, this strategy reduces the attenuation in amplitude of ERP components thanks to the reduction of the influence of variability of latency and jitter, and, thus, improves the averaged ERP waveforms.This publication is part of project PID2021-123207NB-I00, funded by MCIN/AEI /10.13039/501100011033 / FEDER, UE. This work was partially funded by Junta de Andalucía, Proyectos de I+D+i, in the framework of Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020), under Project No. PY20_00237. Funding for open access charge: Universidad de Málaga/CBUA. This work was done at Universidad de Málaga, Campus de Excelencia Internacional Andalucia Tech
    • …
    corecore