2,847 research outputs found

    Image Restoration from Patch-based Compressed Sensing Measurement

    Full text link
    A series of methods have been proposed to reconstruct an image from compressively sensed random measurement, but most of them have high time complexity and are inappropriate for patch-based compressed sensing capture, because of their serious blocky artifacts in the restoration results. In this paper, we present a non-iterative image reconstruction method from patch-based compressively sensed random measurement. Our method features two cascaded networks based on residual convolution neural network to learn the end-to-end full image restoration, which is capable of reconstructing image patches and removing the blocky effect with low time cost. Experimental results on synthetic and real data show that our method outperforms state-of-the-art compressive sensing (CS) reconstruction methods with patch-based CS measurement. To demonstrate the effectiveness of our method in more general setting, we apply the de-block process in our method to JPEG compression artifacts removal and achieve outstanding performance as well

    The Power of Complementary Regularizers: Image Recovery via Transform Learning and Low-Rank Modeling

    Full text link
    Recent works on adaptive sparse and on low-rank signal modeling have demonstrated their usefulness in various image / video processing applications. Patch-based methods exploit local patch sparsity, whereas other works apply low-rankness of grouped patches to exploit image non-local structures. However, using either approach alone usually limits performance in image reconstruction or recovery applications. In this work, we propose a simultaneous sparsity and low-rank model, dubbed STROLLR, to better represent natural images. In order to fully utilize both the local and non-local image properties, we develop an image restoration framework using a transform learning scheme with joint low-rank regularization. The approach owes some of its computational efficiency and good performance to the use of transform learning for adaptive sparse representation rather than the popular synthesis dictionary learning algorithms, which involve approximation of NP-hard sparse coding and expensive learning steps. We demonstrate the proposed framework in various applications to image denoising, inpainting, and compressed sensing based magnetic resonance imaging. Results show promising performance compared to state-of-the-art competing methods.Comment: 13 pages, 7 figures, submitted to TI

    Nonlocal Low-Rank Tensor Factor Analysis for Image Restoration

    Full text link
    Low-rank signal modeling has been widely leveraged to capture non-local correlation in image processing applications. We propose a new method that employs low-rank tensor factor analysis for tensors generated by grouped image patches. The low-rank tensors are fed into the alternative direction multiplier method (ADMM) to further improve image reconstruction. The motivating application is compressive sensing (CS), and a deep convolutional architecture is adopted to approximate the expensive matrix inversion in CS applications. An iterative algorithm based on this low-rank tensor factorization strategy, called NLR-TFA, is presented in detail. Experimental results on noiseless and noisy CS measurements demonstrate the superiority of the proposed approach, especially at low CS sampling rates

    Joint group and residual sparse coding for image compressive sensing

    Full text link
    Nonlocal self-similarity and group sparsity have been widely utilized in image compressive sensing (CS). However, when the sampling rate is low, the internal prior information of degraded images may be not enough for accurate restoration, resulting in loss of image edges and details. In this paper, we propose a joint group and residual sparse coding method for CS image recovery (JGRSC-CS). In the proposed JGRSC-CS, patch group is treated as the basic unit of sparse coding and two dictionaries (namely internal and external dictionaries) are applied to exploit the sparse representation of each group simultaneously. The internal self-adaptive dictionary is used to remove artifacts, and an external Gaussian Mixture Model (GMM) dictionary, learned from clean training images, is used to enhance details and texture. To make the proposed method effective and robust, the split Bregman method is adopted to reconstruct the whole image. Experimental results manifest the proposed JGRSC-CS algorithm outperforms existing state-of-the-art methods in both peak signal to noise ratio (PSNR) and visual quality.Comment: 27 pages, 7 figure

    Group-based Sparse Representation for Image Compressive Sensing Reconstruction with Non-Convex Regularization

    Full text link
    Patch-based sparse representation modeling has shown great potential in image compressive sensing (CS) reconstruction. However, this model usually suffers from some limits, such as dictionary learning with great computational complexity, neglecting the relationship among similar patches. In this paper, a group-based sparse representation method with non-convex regularization (GSR-NCR) for image CS reconstruction is proposed. In GSR-NCR, the local sparsity and nonlocal self-similarity of images is simultaneously considered in a unified framework. Different from the previous methods based on sparsity-promoting convex regularization, we extend the non-convex weighted Lp (0 < p < 1) penalty function on group sparse coefficients of the data matrix, rather than conventional L1-based regularization. To reduce the computational complexity, instead of learning the dictionary with a high computational complexity from natural images, we learn the principle component analysis (PCA) based dictionary for each group. Moreover, to make the proposed scheme tractable and robust, we have developed an efficient iterative shrinkage/thresholding algorithm to solve the non-convex optimization problem. Experimental results demonstrate that the proposed method outperforms many state-of-the-art techniques for image CS reconstruction

    Highly Scalable Image Reconstruction using Deep Neural Networks with Bandpass Filtering

    Full text link
    To increase the flexibility and scalability of deep neural networks for image reconstruction, a framework is proposed based on bandpass filtering. For many applications, sensing measurements are performed indirectly. For example, in magnetic resonance imaging, data are sampled in the frequency domain. The introduction of bandpass filtering enables leveraging known imaging physics while ensuring that the final reconstruction is consistent with actual measurements to maintain reconstruction accuracy. We demonstrate this flexible architecture for reconstructing subsampled datasets of MRI scans. The resulting high subsampling rates increase the speed of MRI acquisitions and enable the visualization rapid hemodynamics.Comment: 9 pages, 10 figure

    Compressive Video Sensing via Dictionary Learning and Forward Prediction

    Full text link
    In this paper, we propose a new framework for compressive video sensing (CVS) that exploits the inherent spatial and temporal redundancies of a video sequence, effectively. The proposed method splits the video sequence into the key and non-key frames followed by dividing each frame into small non-overlapping blocks of equal sizes. At the decoder side, the key frames are reconstructed using adaptively learned sparsifying (ALS) basis via â„“0\ell_0 minimization, in order to exploit the spatial redundancy. Also, the effectiveness of three well-known dictionary learning algorithms is investigated in our method. For recovery of the non-key frames, a prediction of the current frame is initialized, by using the previous reconstructed frame, in order to exploit the temporal redundancy. The prediction is employed in a proper optimization problem to recover the current non-key frame. To compare our experimental results with the results of some other methods, we employ peak signal to noise ratio (PSNR) and structural similarity (SSIM) index as the quality assessor. The numerical results show the adequacy of our proposed method in CVS.Comment: 26 Pages, 5 Figures, 3 Tables, This paper was presented in part at the 7th International Symposium on Telecommunications. arXiv admin note: text overlap with arXiv:1404.7566 by other author

    Compressive Sensing via Low-Rank Gaussian Mixture Models

    Full text link
    We develop a new compressive sensing (CS) inversion algorithm by utilizing the Gaussian mixture model (GMM). While the compressive sensing is performed globally on the entire image as implemented in our lensless camera, a low-rank GMM is imposed on the local image patches. This low-rank GMM is derived via eigenvalue thresholding of the GMM trained on the projection of the measurement data, thus learned {\em in situ}. The GMM and the projection of the measurement data are updated iteratively during the reconstruction. Our GMM algorithm degrades to the piecewise linear estimator (PLE) if each patch is represented by a single Gaussian model. Inspired by this, a low-rank PLE algorithm is also developed for CS inversion, constituting an additional contribution of this paper. Extensive results on both simulation data and real data captured by the lensless camera demonstrate the efficacy of the proposed algorithm. Furthermore, we compare the CS reconstruction results using our algorithm with the JPEG compression. Simulation results demonstrate that when limited bandwidth is available (a small number of measurements), our algorithm can achieve comparable results as JPEG.Comment: 12 pages, 8 figure

    A survey of sparse representation: algorithms and applications

    Full text link
    Sparse representation has attracted much attention from researchers in fields of signal processing, image processing, computer vision and pattern recognition. Sparse representation also has a good reputation in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. The main purpose of this article is to provide a comprehensive study and an updated review on sparse representation and to supply a guidance for researchers. The taxonomy of sparse representation methods can be studied from various viewpoints. For example, in terms of different norm minimizations used in sparsity constraints, the methods can be roughly categorized into five groups: sparse representation with l0l_0-norm minimization, sparse representation with lpl_p-norm (0<<p<<1) minimization, sparse representation with l1l_1-norm minimization and sparse representation with l2,1l_{2,1}-norm minimization. In this paper, a comprehensive overview of sparse representation is provided. The available sparse representation algorithms can also be empirically categorized into four groups: greedy strategy approximation, constrained optimization, proximity algorithm-based optimization, and homotopy algorithm-based sparse representation. The rationales of different algorithms in each category are analyzed and a wide range of sparse representation applications are summarized, which could sufficiently reveal the potential nature of the sparse representation theory. Specifically, an experimentally comparative study of these sparse representation algorithms was presented. The Matlab code used in this paper can be available at: http://www.yongxu.org/lunwen.html.Comment: Published on IEEE Access, Vol. 3, pp. 490-530, 201

    Measurement-Adaptive Sparse Image Sampling and Recovery

    Full text link
    This paper presents an adaptive and intelligent sparse model for digital image sampling and recovery. In the proposed sampler, we adaptively determine the number of required samples for retrieving image based on space-frequency-gradient information content of image patches. By leveraging texture in space, sparsity locations in DCT domain, and directional decomposition of gradients, the sampler structure consists of a combination of uniform, random, and nonuniform sampling strategies. For reconstruction, we model the recovery problem as a two-state cellular automaton to iteratively restore image with scalable windows from generation to generation. We demonstrate the recovery algorithm quickly converges after a few generations for an image with arbitrary degree of texture. For a given number of measurements, extensive experiments on standard image-sets, infra-red, and mega-pixel range imaging devices show that the proposed measurement matrix considerably increases the overall recovery performance, or equivalently decreases the number of sampled pixels for a specific recovery quality compared to random sampling matrix and Gaussian linear combinations employed by the state-of-the-art compressive sensing methods. In practice, the proposed measurement-adaptive sampling/recovery framework includes various applications from intelligent compressive imaging-based acquisition devices to computer vision and graphics, and image processing technology. Simulation codes are available online for reproduction purposes
    • …
    corecore