266,143 research outputs found

    Digital mammography, cancer screening: Factors important for image compression

    Get PDF
    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers

    DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation

    Full text link
    Automatic organ segmentation is an important yet challenging problem for medical image analysis. The pancreas is an abdominal organ with very high anatomical variability. This inhibits previous segmentation methods from achieving high accuracies, especially compared to other organs such as the liver, heart or kidneys. In this paper, we present a probabilistic bottom-up approach for pancreas segmentation in abdominal computed tomography (CT) scans, using multi-level deep convolutional networks (ConvNets). We propose and evaluate several variations of deep ConvNets in the context of hierarchical, coarse-to-fine classification on image patches and regions, i.e. superpixels. We first present a dense labeling of local image patches via PConvNetP{-}\mathrm{ConvNet} and nearest neighbor fusion. Then we describe a regional ConvNet (R1ConvNetR_1{-}\mathrm{ConvNet}) that samples a set of bounding boxes around each image superpixel at different scales of contexts in a "zoom-out" fashion. Our ConvNets learn to assign class probabilities for each superpixel region of being pancreas. Last, we study a stacked R2ConvNetR_2{-}\mathrm{ConvNet} leveraging the joint space of CT intensities and the PConvNetP{-}\mathrm{ConvNet} dense probability maps. Both 3D Gaussian smoothing and 2D conditional random fields are exploited as structured predictions for post-processing. We evaluate on CT images of 82 patients in 4-fold cross-validation. We achieve a Dice Similarity Coefficient of 83.6±\pm6.3% in training and 71.8±\pm10.7% in testing.Comment: To be presented at MICCAI 2015 - 18th International Conference on Medical Computing and Computer Assisted Interventions, Munich, German

    Age determination of eels in the French Mediterranean lagoons using classical methods and an image analysis system

    Get PDF
    Several methods are used for age determination of eels in the French mediterranean lagoons (observation of the whole otolith after clearing, grinding and polishing, dyeing, SEM and image analysis). Two types of otoliths are observed depending on the width of the growth rings which is probably related to the environmental conditions. Furthermore, the growth checks are located nearby or inside the opaque rings. A computer assisted method is developed, with reference to the other methods, with the aim of improving the efficiency of collecting and processing age and growth data. With further developments and increasing knowledge of life-history of elvers and juvenile eels, it seems possible to use an image analysis system for ageing eels in lagoons. Nevertheless, the most important point is to validate the results before using them for growth populations studies. (Résumé d'auteur

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519
    corecore