814 research outputs found

    Affine Subspace Representation for Feature Description

    Full text link
    This paper proposes a novel Affine Subspace Representation (ASR) descriptor to deal with affine distortions induced by viewpoint changes. Unlike the traditional local descriptors such as SIFT, ASR inherently encodes local information of multi-view patches, making it robust to affine distortions while maintaining a high discriminative ability. To this end, PCA is used to represent affine-warped patches as PCA-patch vectors for its compactness and efficiency. Then according to the subspace assumption, which implies that the PCA-patch vectors of various affine-warped patches of the same keypoint can be represented by a low-dimensional linear subspace, the ASR descriptor is obtained by using a simple subspace-to-point mapping. Such a linear subspace representation could accurately capture the underlying information of a keypoint (local structure) under multiple views without sacrificing its distinctiveness. To accelerate the computation of ASR descriptor, a fast approximate algorithm is proposed by moving the most computational part (ie, warp patch under various affine transformations) to an offline training stage. Experimental results show that ASR is not only better than the state-of-the-art descriptors under various image transformations, but also performs well without a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio

    WxBS: Wide Baseline Stereo Generalizations

    Full text link
    We have presented a new problem -- the wide multiple baseline stereo (WxBS) -- which considers matching of images that simultaneously differ in more than one image acquisition factor such as viewpoint, illumination, sensor type or where object appearance changes significantly, e.g. over time. A new dataset with the ground truth for evaluation of matching algorithms has been introduced and will be made public. We have extensively tested a large set of popular and recent detectors and descriptors and show than the combination of RootSIFT and HalfRootSIFT as descriptors with MSER and Hessian-Affine detectors works best for many different nuisance factors. We show that simple adaptive thresholding improves Hessian-Affine, DoG, MSER (and possibly other) detectors and allows to use them on infrared and low contrast images. A novel matching algorithm for addressing the WxBS problem has been introduced. We have shown experimentally that the WxBS-M matcher dominantes the state-of-the-art methods both on both the new and existing datasets.Comment: Descriptor and detector evaluation expande

    LIFT: Learned Invariant Feature Transform

    Get PDF
    We introduce a novel Deep Network architecture that implements the full feature point handling pipeline, that is, detection, orientation estimation, and feature description. While previous works have successfully tackled each one of these problems individually, we show how to learn to do all three in a unified manner while preserving end-to-end differentiability. We then demonstrate that our Deep pipeline outperforms state-of-the-art methods on a number of benchmark datasets, without the need of retraining.Comment: Accepted to ECCV 2016 (spotlight

    DCTM: Discrete-Continuous Transformation Matching for Semantic Flow

    Full text link
    Techniques for dense semantic correspondence have provided limited ability to deal with the geometric variations that commonly exist between semantically similar images. While variations due to scale and rotation have been examined, there lack practical solutions for more complex deformations such as affine transformations because of the tremendous size of the associated solution space. To address this problem, we present a discrete-continuous transformation matching (DCTM) framework where dense affine transformation fields are inferred through a discrete label optimization in which the labels are iteratively updated via continuous regularization. In this way, our approach draws solutions from the continuous space of affine transformations in a manner that can be computed efficiently through constant-time edge-aware filtering and a proposed affine-varying CNN-based descriptor. Experimental results show that this model outperforms the state-of-the-art methods for dense semantic correspondence on various benchmarks

    3D Face Recognition using Significant Point based SULD Descriptor

    Full text link
    In this work, we present a new 3D face recognition method based on Speeded-Up Local Descriptor (SULD) of significant points extracted from the range images of faces. The proposed model consists of a method for extracting distinctive invariant features from range images of faces that can be used to perform reliable matching between different poses of range images of faces. For a given 3D face scan, range images are computed and the potential interest points are identified by searching at all scales. Based on the stability of the interest point, significant points are extracted. For each significant point we compute the SULD descriptor which consists of vector made of values from the convolved Haar wavelet responses located on concentric circles centred on the significant point, and where the amount of Gaussian smoothing is proportional to the radii of the circles. Experimental results show that the newly proposed method provides higher recognition rate compared to other existing contemporary models developed for 3D face recognition
    • …
    corecore