35 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    A Joint Intensity and Depth Co-Sparse Analysis Model for Depth Map Super-Resolution

    Full text link
    High-resolution depth maps can be inferred from low-resolution depth measurements and an additional high-resolution intensity image of the same scene. To that end, we introduce a bimodal co-sparse analysis model, which is able to capture the interdependency of registered intensity and depth information. This model is based on the assumption that the co-supports of corresponding bimodal image structures are aligned when computed by a suitable pair of analysis operators. No analytic form of such operators exist and we propose a method for learning them from a set of registered training signals. This learning process is done offline and returns a bimodal analysis operator that is universally applicable to natural scenes. We use this to exploit the bimodal co-sparse analysis model as a prior for solving inverse problems, which leads to an efficient algorithm for depth map super-resolution.Comment: 13 pages, 4 figure

    Integrated cosparse analysis model with explicit edge inconsistency measurement for guided depth map upsampling

    Full text link
    © 2018 SPIE and IS & T. A low-resolution depth map can be upsampled through the guidance from the registered high-resolution color image. This type of method is so-called guided depth map upsampling. Among the existing methods based on Markov random field (MRF), either data-driven or model-based prior is adopted to construct the regularization term. The data-driven prior can implicitly reveal the relation between color-depth image pair by training on external data. The model-based prior provides the anisotropic smoothness constraint guided by high-resolution color image. These types of priors can complement each other to solve the ambiguity in guided depth map upsampling. An MRF-based approach is proposed that takes both of them into account to regularize the depth map. Based on analysis sparse coding, the data-driven prior is defined by joint cosparsity on the vectors transformed from color-depth patches using the pair of learned operators. It is based on the assumption that the cosupports of such bimodal image structures computed by the operators are aligned. The edge inconsistency measurement is explicitly calculated, which is embedded into the model-based prior. It can significantly mitigate texture-copying artifacts. The experimental results on Middlebury datasets demonstrate the validity of the proposed method that outperforms seven state-of-the-art approaches

    Infrared and Visible Image Fusion using a Deep Learning Framework

    Full text link
    In recent years, deep learning has become a very active research tool which is used in many image processing fields. In this paper, we propose an effective image fusion method using a deep learning framework to generate a single image which contains all the features from infrared and visible images. First, the source images are decomposed into base parts and detail content. Then the base parts are fused by weighted-averaging. For the detail content, we use a deep learning network to extract multi-layer features. Using these features, we use l_1-norm and weighted-average strategy to generate several candidates of the fused detail content. Once we get these candidates, the max selection strategy is used to get final fused detail content. Finally, the fused image will be reconstructed by combining the fused base part and detail content. The experimental results demonstrate that our proposed method achieves state-of-the-art performance in both objective assessment and visual quality. The Code of our fusion method is available at https://github.com/hli1221/imagefusion_deeplearningComment: 6 pages, 6 figures, 2 tables, ICPR 2018(accepted

    Depth Superresolution using Motion Adaptive Regularization

    Full text link
    Spatial resolution of depth sensors is often significantly lower compared to that of conventional optical cameras. Recent work has explored the idea of improving the resolution of depth using higher resolution intensity as a side information. In this paper, we demonstrate that further incorporating temporal information in videos can significantly improve the results. In particular, we propose a novel approach that improves depth resolution, exploiting the space-time redundancy in the depth and intensity using motion-adaptive low-rank regularization. Experiments confirm that the proposed approach substantially improves the quality of the estimated high-resolution depth. Our approach can be a first component in systems using vision techniques that rely on high resolution depth information

    MDLatLRR: A novel decomposition method for infrared and visible image fusion

    Get PDF
    Image decomposition is crucial for many image processing tasks, as it allows to extract salient features from source images. A good image decomposition method could lead to a better performance, especially in image fusion tasks. We propose a multi-level image decomposition method based on latent low-rank representation(LatLRR), which is called MDLatLRR. This decomposition method is applicable to many image processing fields. In this paper, we focus on the image fusion task. We develop a novel image fusion framework based on MDLatLRR, which is used to decompose source images into detail parts(salient features) and base parts. A nuclear-norm based fusion strategy is used to fuse the detail parts, and the base parts are fused by an averaging strategy. Compared with other state-of-the-art fusion methods, the proposed algorithm exhibits better fusion performance in both subjective and objective evaluation.Comment: IEEE Trans. Image Processing 2020, 14 pages, 17 figures, 3 table
    corecore