2,340 research outputs found

    Adaptive, locally-linear models of complex dynamics

    Get PDF
    The dynamics of complex systems generally include high-dimensional, non-stationary and non-linear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties we detail a new approach based on local linear models within windows determined adaptively from the data. While the dynamics within each window are simple, consisting of exponential decay, growth and oscillations, the collection of local parameters across all windows provides a principled characterization of the full time series. To explore the resulting model space, we develop a novel likelihood-based hierarchical clustering and we examine the eigenvalues of the linear dynamics. We demonstrate our analysis with the Lorenz system undergoing stable spiral dynamics and in the standard chaotic regime. Applied to the posture dynamics of the nematode C.elegansC. elegans our approach identifies fine-grained behavioral states and model dynamics which fluctuate close to an instability boundary, and we detail a bifurcation in a transition from forward to backward crawling. Finally, we analyze whole-brain imaging in C.elegansC. elegans and show that the stability of global brain states changes with oxygen concentration.Comment: 25 pages, 16 figure

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Powerful and interpretable behavioural features for quantitative phenotyping of C. elegans

    Get PDF
    Behaviour is a sensitive and integrative readout of nervous system function and therefore an attractive measure for assessing the effects of mutation or drug treatment on animals. Video data provide a rich but high-dimensional representation of behaviour, and so the first step of analysis is often some form of tracking and feature extraction to reduce dimensionality while maintaining relevant information. Modern machine-learning methods are powerful but notoriously difficult to interpret, while handcrafted features are interpretable but do not always perform as well. Here, we report a new set of handcrafted features to compactly quantify Caenorhabditis elegans behaviour. The features are designed to be interpretable but to capture as much of the phenotypic differences between worms as possible. We show that the full feature set is more powerful than a previously defined feature set in classifying mutant strains. We then use a combination of automated and manual feature selection to define a core set of interpretable features that still provides sufficient power to detect behavioural differences between mutant strains and the wild-type. Finally, we apply the new features to detect time-resolved behavioural differences in a series of optogenetic experiments targeting different neural subsets

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Automated, high-throughput, motility analysis in Caenorhabditis elegans and parasitic nematodes: Applications in the search for new anthelmintics

    Get PDF
    The scale of the damage worldwide to human health, animal health and agricultural crops resulting from parasitic nematodes, together with the paucity of treatments and the threat of developing resistance to the limited set of widely-deployed chemical tools, underlines the urgent need to develop novel drugs and chemicals to control nematode parasites. Robust chemical screens which can be automated are a key part of that discovery process. Hitherto, the successful automation of nematode behaviours has been a bottleneck in the chemical discovery process. As the measurement of nematode motility can provide a direct scalar readout of the activity of the neuromuscular system and an indirect measure of the health of the animal, this omission is acute. Motility offers a useful assay for high-throughput, phenotypic drug/chemical screening and several recent developments have helped realise, at least in part, the potential of nematode-based drug screening. Here we review the challenges encountered in automating nematode motility and some important developments in the application of machine vision, statistical imaging and tracking approaches which enable the automated characterisation of nematode movement. Such developments facilitate automated screening for new drugs and chemicals aimed at controlling human and animal nematode parasites (anthelmintics) and plant nematode parasites (nematicides)

    Tools for Behavioral Phenotyping of C. elegans

    Get PDF
    Animal behavior is critical to survival and provides a window into how the brain makes decisions and integrates sensory information. A simple model organism that allows researchers to more precisely interrogate the relationships between behavior and the brain is the nematode C. elegans. However, current phenotyping tools have technical limitations that make observing, intervening in, and quantifying behavior in diverse settings difficult. In this thesis, I develop enabling technological systems to resolve these challenges. To address scaling issues in observation and intervention in long-term behavior, I develop a platform for long-term continuous imaging, online behavior quantification, and online behavior-conditional intervention. I show that this tool is easy to build and use and can operate in an automated fashion for days at a time. I then use this platform to understand the consequences of quiescence deprivation to C. elegans health. To quantify complex animal postures, and plant and stem cell aggregate morphology, I develop an app to enable fast, versatile and quantitative annotation and demonstrate that it is both ~ 130-fold faster and in some cases less error-prone than state-of-the-art computational methods. This app is agnostic to image content and allows freehand annotation of curves and other complex and non-uniform shapes while also providing an automated way to distribute annotation tasks. This tool may be used to generate ground truth sets for testing or creating automated algorithms. Finally, I quantify C. elegans behavior using quantitative machine-learning analysis and map the worm’s behavioral repertoire across multiple physical environments that more closely mimic C. elegans’ natural environment. From this analysis, I identified subtle behaviors that are not easily distinguishable by eye and built a tool that allows others to explore our video dataset and behaviors in a facile way. I also use this analysis to examine the richness of C. elegans behavior across selected environments and find that behavior diversity is not uniform across environments. This has important implications for choice of media for behavioral phenotyping, as it suggests that the appropriate media choice may increase our ability to distinguish behavioral phenotypes in C. elegans. Together, these tools enable novel behavior experiments at a larger scale and with more nuanced phenotyping compared to currently available tools.Ph.D
    • …
    corecore