75,011 research outputs found
No-reference Image Denoising Quality Assessment
A wide variety of image denoising methods are available now. However, the
performance of a denoising algorithm often depends on individual input noisy
images as well as its parameter setting. In this paper, we present a
no-reference image denoising quality assessment method that can be used to
select for an input noisy image the right denoising algorithm with the optimal
parameter setting. This is a challenging task as no ground truth is available.
This paper presents a data-driven approach to learn to predict image denoising
quality. Our method is based on the observation that while individual existing
quality metrics and denoising models alone cannot robustly rank denoising
results, they often complement each other. We accordingly design denoising
quality features based on these existing metrics and models and then use Random
Forests Regression to aggregate them into a more powerful unified metric. Our
experiments on images with various types and levels of noise show that our
no-reference denoising quality assessment method significantly outperforms the
state-of-the-art quality metrics. This paper also provides a method that
leverages our quality assessment method to automatically tune the parameter
settings of a denoising algorithm for an input noisy image to produce an
optimal denoising result.Comment: 17 pages, 41 figures, accepted by Computer Vision Conference (CVC)
201
Boosting of Image Denoising Algorithms
In this paper we propose a generic recursive algorithm for improving image
denoising methods. Given the initial denoised image, we suggest repeating the
following "SOS" procedure: (i) (S)trengthen the signal by adding the previous
denoised image to the degraded input image, (ii) (O)perate the denoising method
on the strengthened image, and (iii) (S)ubtract the previous denoised image
from the restored signal-strengthened outcome. The convergence of this process
is studied for the K-SVD image denoising and related algorithms. Still in the
context of K-SVD image denoising, we introduce an interesting interpretation of
the SOS algorithm as a technique for closing the gap between the local
patch-modeling and the global restoration task, thereby leading to improved
performance. In a quest for the theoretical origin of the SOS algorithm, we
provide a graph-based interpretation of our method, where the SOS recursive
update effectively minimizes a penalty function that aims to denoise the image,
while being regularized by the graph Laplacian. We demonstrate the SOS boosting
algorithm for several leading denoising methods (K-SVD, NLM, BM3D, and EPLL),
showing tendency to further improve denoising performance.Comment: 33 pages, 9 figures, 3 tables, submitted to SIAM Journal on Imaging
Science
Dilated Deep Residual Network for Image Denoising
Variations of deep neural networks such as convolutional neural network (CNN)
have been successfully applied to image denoising. The goal is to automatically
learn a mapping from a noisy image to a clean image given training data
consisting of pairs of noisy and clean images. Most existing CNN models for
image denoising have many layers. In such cases, the models involve a large
amount of parameters and are computationally expensive to train. In this paper,
we develop a dilated residual CNN for Gaussian image denoising. Compared with
the recently proposed residual denoiser, our method can achieve comparable
performance with less computational cost. Specifically, we enlarge receptive
field by adopting dilated convolution in residual network, and the dilation
factor is set to a certain value. We utilize appropriate zero padding to make
the dimension of the output the same as the input. It has been proven that the
expansion of receptive field can boost the CNN performance in image
classification, and we further demonstrate that it can also lead to competitive
performance for denoising problem. Moreover, we present a formula to calculate
receptive field size when dilated convolution is incorporated. Thus, the change
of receptive field can be interpreted mathematically. To validate the efficacy
of our approach, we conduct extensive experiments for both gray and color image
denoising with specific or randomized noise levels. Both of the quantitative
measurements and the visual results of denoising are promising comparing with
state-of-the-art baselines.Comment: camera ready, 8 pages, accepted to IEEE ICTAI 201
A Research and Strategy of Remote Sensing Image Denoising Algorithms
Most raw data download from satellites are useless, resulting in transmission
waste, one solution is to process data directly on satellites, then only
transmit the processed results to the ground. Image processing is the main data
processing on satellites, in this paper, we focus on image denoising which is
the basic image processing. There are many high-performance denoising
approaches at present, however, most of them rely on advanced computing
resources or rich images on the ground. Considering the limited computing
resources of satellites and the characteristics of remote sensing images, we do
some research on these high-performance ground image denoising approaches and
compare them in simulation experiments to analyze whether they are suitable for
satellites. According to the analysis results, we propose two feasible image
denoising strategies for satellites based on satellite TianZhi-1.Comment: 9 pages, 4 figures, ICNC-FSKD 201
- …
