300 research outputs found

    Signal De-noising method based on particle swarm algorithm and Wavelet transform

    Get PDF
    Wavelet analiza je novi alat za analizu odnosa vrijeme-frekvencija, razvijen na temelju Fourierove analize s dobrim svojstvom lokaliziranja vremena i frekvencije i mogućnosti donošenja višestrukih rješenja. Koristi se u cijelom nizu primjena u području obrade signala. U ovom se radu analizira primjena wavelet transforma u filtriranju signala korištenjem poboljšane optimalizacije roja čestica i predlaže inteligentna metoda uklanjanja šuma iz signala zasnovana na wavelet analizi. Metoda koristi Center Based Particle Swarm Algorithm (CBPSO) za izbor optimalnog praga za svaki pod-pojas u različitim mjerilima, inteligentno razaznavajući vrstu šuma iz samog signala, što ne zahtijeva nikakvo prethodno poznavanje šuma. Poboljšani algoritam roja čestica koristi se da potakne optimalni izbor različitih mjerila praga wavelet domena, što je dovelo do uklanjanja šuma iz signala kod različitih tipova pozadinskog šuma, i povećane brzine wavelet transforma i wavelet konstrukcije te ima veću fleksibilnost. Eksperimentalni rezultati su pokazali da se CBPSO algoritmom može postići bolji učinak uklanjanja šuma.Wavelet analysis is a new time-frequency analysis tool developed on the basis of Fourier analysis with good time-frequency localization property and multi-resolution characteristics, which is in a wide range of applications in the field of signal processing. This paper studies the application of wavelet transform in signal filtering, by using an improved particle swarm optimization, proposes an intelligent signal de-noising method based on wavelet analysis. The method uses a Center Based Particle Swarm Algorithm (CBPSO) to select the optimal threshold for each sub-band in different scales, learning the type of noise from the signal itself intelligently, which does not require any prior knowledge of the noise. The improved particle swarm algorithm is used to enhance the optimal choice of the different scales of the wavelet domain threshold, which realized the signal De-noising under different types of noise background, and improved the speed of wavelet transform and wavelet construction, and has greater flexibility. The experimental results showed that CBPSO algorithm can get better De-noising effect

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Mengenal pasti tahap pengetahuan pelajar tahun akhir Ijazah Sarjana Muda Kejuruteraan di KUiTTHO dalam bidang keusahawanan dari aspek pengurusan modal

    Get PDF
    Malaysia ialah sebuah negara membangun di dunia. Dalam proses pembangunan ini, hasrat negara untuk melahirkan bakal usahawan beijaya tidak boleh dipandang ringan. Oleh itu, pengetahuan dalam bidang keusahawanan perlu diberi perhatian dengan sewajarnya; antara aspek utama dalam keusahawanan ialah modal. Pengurusan modal yang tidak cekap menjadi punca utama kegagalan usahawan. Menyedari hakikat ini, kajian berkaitan Pengurusan Modal dijalankan ke atas 100 orang pelajar Tahun Akhir Kejuruteraan di KUiTTHO. Sampel ini dipilih kerana pelajar-pelajar ini akan menempuhi alam pekeijaan di mana mereka boleh memilih keusahawanan sebagai satu keijaya. Walau pun mereka bukanlah pelajar dari jurusan perniagaan, namun mereka mempunyai kemahiran dalam mereka cipta produk yang boleh dikomersialkan. Hasil dapatan kajian membuktikan bahawa pelajar-pelajar ini berminat dalam bidang keusahawanan namun masih kurang pengetahuan tentang pengurusan modal terutamanya dalam menentukan modal permulaan, pengurusan modal keija dan caracara menentukan pembiayaan kewangan menggunakan kaedah jualan harian. Oleh itu, satu garis panduan Pengurusan Modal dibina untuk memberi pendedahan kepada mereka

    Compressive sampling for accelerometer signals in structural health monitoring

    Get PDF
    In structural health monitoring (SHM) of civil structures, data compression is often needed to reduce the cost of data transfer and storage, because of the large volumes of sensor data generated from the monitoring system. The traditional framework for data compression is to first sample the full signal and, then to compress it. Recently, a new data compression method named compressive sampling (CS) that can acquire the data directly in compressed form by using special sensors has been presented. In this article, the potential of CS for data compression of vibration data is investigated using simulation of the CS sensor algorithm. For reconstruction of the signal, both wavelet and Fourier orthogonal bases are examined. The acceleration data collected from the SHM system of Shandong Binzhou Yellow River Highway Bridge is used to analyze the data compression ability of CS. For comparison, both the wavelet-based and Huffman coding methods are employed to compress the data. The results show that the values of compression ratios achieved using CS are not high, because the vibration data used in SHM of civil structures are not naturally sparse in the chosen bases

    Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising

    Get PDF
    Magnetic resonance imaging (MRI) is extensively exploited for more accuratepathological changes as well as diagnosis. Conversely, MRI suffers from variousshortcomings such as ambient noise from the environment, acquisition noise from theequipment, the presence of background tissue, breathing motion, body fat, etc.Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation basedintersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters.This filter requires an adjustment of the ICI parameters for efficient window size selection.From the wide range of ICI parametric values, finding out the best set of tunes values is itselfan optimization problem. The present study proposed a novel technique for parameteroptimization of LPA-ICI filter using genetic algorithm (GA) for brain MR imagesde-noising. The experimental results proved that the proposed method outperforms theLPA-ICI method for de-noising in terms of various performance metrics for different noisevariance levels. Obtained results reports that the ICI parameter values depend on the noisevariance and the concerned under test image

    Blind Curvelet based Denoising of Seismic Surveys in Coherent and Incoherent Noise Environments

    Full text link
    The localized nature of curvelet functions, together with their frequency and dip characteristics, makes the curvelet transform an excellent choice for processing seismic data. In this work, a denoising method is proposed based on a combination of the curvelet transform and a whitening filter along with procedure for noise variance estimation. The whitening filter is added to get the best performance of the curvelet transform under coherent and incoherent correlated noise cases, and furthermore, it simplifies the noise estimation method and makes it easy to use the standard threshold methodology without digging into the curvelet domain. The proposed method is tested on pseudo-synthetic data by adding noise to real noise-less data set of the Netherlands offshore F3 block and on the field data set from east Texas, USA, containing ground roll noise. Our experimental results show that the proposed algorithm can achieve the best results under all types of noises (incoherent or uncorrelated or random, and coherent noise)

    ENO-wavelet transforms for piecewise smooth functions

    Get PDF
    We have designed an adaptive essentially nonoscillatory (ENO)-wavelet transform for approximating discontinuous functions without oscillations near the discontinuities. Our approach is to apply the main idea from ENO schemes for numerical shock capturing to standard wavelet transforms. The crucial point is that the wavelet coefficients are computed without differencing function values across jumps. However, we accomplish this in a different way than in the standard ENO schemes. Whereas in the standard ENO schemes the stencils are adaptively chosen, in the ENO-wavelet transforms we adaptively change the function and use the same uniform stencils. The ENO-wavelet transform retains the essential properties and advantages of standard wavelet transforms such as concentrating the energy to the low frequencies, obtaining maximum accuracy, maintained up to the discontinuities, and having a multiresolution framework and fast algorithms, all without any edge artifacts. We have obtained a rigorous approximation error bound which shows that the error in the ENO-wavelet approximation depends only on the size of the derivative of the function away from the discontinuities. We will show some numerical examples to illustrate this error estimate

    Projections Onto Convex Sets (POCS) Based Optimization by Lifting

    Get PDF
    Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in R^N the corresponding set is a convex set in R^(N+1). The iterative optimization approach starts with an arbitrary initial estimate in R^(N+1) and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation, filtered variation, l1, and entropic cost functions. It is also experimentally observed that cost functions based on lp, p<1 can be handled by using the supporting hyperplane concept
    • …
    corecore