11 research outputs found

    Image Compressive Sensing Recovery via Collaborative Sparsity

    Full text link

    Improved Total Variation based Image Compressive Sensing Recovery by Nonlocal Regularization

    Full text link
    Recently, total variation (TV) based minimization algorithms have achieved great success in compressive sensing (CS) recovery for natural images due to its virtue of preserving edges. However, the use of TV is not able to recover the fine details and textures, and often suffers from undesirable staircase artifact. To reduce these effects, this letter presents an improved TV based image CS recovery algorithm by introducing a new nonlocal regularization constraint into CS optimization problem. The nonlocal regularization is built on the well known nonlocal means (NLM) filtering and takes advantage of self-similarity in images, which helps to suppress the staircase effect and restore the fine details. Furthermore, an efficient augmented Lagrangian based algorithm is developed to solve the above combined TV and nonlocal regularization constrained problem. Experimental results demonstrate that the proposed algorithm achieves significant performance improvements over the state-of-the-art TV based algorithm in both PSNR and visual perception.Comment: 4 Pages, 1 figures, 3 tables, to be published at IEEE Int. Symposium of Circuits and Systems (ISCAS) 201

    ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing

    Full text link
    With the aim of developing a fast yet accurate algorithm for compressive sensing (CS) reconstruction of natural images, we combine in this paper the merits of two existing categories of CS methods: the structure insights of traditional optimization-based methods and the speed of recent network-based ones. Specifically, we propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general â„“1\ell_1 norm CS reconstruction model. To cast ISTA into deep network form, we develop an effective strategy to solve the proximal mapping associated with the sparsity-inducing regularizer using nonlinear transforms. All the parameters in ISTA-Net (\eg nonlinear transforms, shrinkage thresholds, step sizes, etc.) are learned end-to-end, rather than being hand-crafted. Moreover, considering that the residuals of natural images are more compressible, an enhanced version of ISTA-Net in the residual domain, dubbed {ISTA-Net}+^+, is derived to further improve CS reconstruction. Extensive CS experiments demonstrate that the proposed ISTA-Nets outperform existing state-of-the-art optimization-based and network-based CS methods by large margins, while maintaining fast computational speed. Our source codes are available: \textsl{http://jianzhang.tech/projects/ISTA-Net}.Comment: 10 pages, 6 figures, 4 Tables. To appear in CVPR 201

    The Power of Triply Complementary Priors for Image Compressive Sensing

    Full text link
    Recent works that utilized deep models have achieved superior results in various image restoration applications. Such approach is typically supervised which requires a corpus of training images with distribution similar to the images to be recovered. On the other hand, the shallow methods which are usually unsupervised remain promising performance in many inverse problems, \eg, image compressive sensing (CS), as they can effectively leverage non-local self-similarity priors of natural images. However, most of such methods are patch-based leading to the restored images with various ringing artifacts due to naive patch aggregation. Using either approach alone usually limits performance and generalizability in image restoration tasks. In this paper, we propose a joint low-rank and deep (LRD) image model, which contains a pair of triply complementary priors, namely \textit{external} and \textit{internal}, \textit{deep} and \textit{shallow}, and \textit{local} and \textit{non-local} priors. We then propose a novel hybrid plug-and-play (H-PnP) framework based on the LRD model for image CS. To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-PnP based image CS problem. Extensive experimental results demonstrate that the proposed H-PnP algorithm significantly outperforms the state-of-the-art techniques for image CS recovery such as SCSNet and WNNM

    Image Restoration Using Joint Statistical Modeling in Space-Transform Domain

    Full text link
    This paper presents a novel strategy for high-fidelity image restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified statistical manner. The main contributions are three-folds. First, from the perspective of image statistics, a joint statistical modeling (JSM) in an adaptive hybrid space-transform domain is established, which offers a powerful mechanism of combining local smoothness and nonlocal self-similarity simultaneously to ensure a more reliable and robust estimation. Second, a new form of minimization functional for solving image inverse problem is formulated using JSM under regularization-based framework. Finally, in order to make JSM tractable and robust, a new Split-Bregman based algorithm is developed to efficiently solve the above severely underdetermined inverse problem associated with theoretical proof of convergence. Extensive experiments on image inpainting, image deblurring and mixed Gaussian plus salt-and-pepper noise removal applications verify the effectiveness of the proposed algorithm.Comment: 14 pages, 18 figures, 7 Tables, to be published in IEEE Transactions on Circuits System and Video Technology (TCSVT). High resolution pdf version and Code can be found at: http://idm.pku.edu.cn/staff/zhangjian/IRJSM

    Group-based Sparse Representation for Image Restoration

    Full text link
    Traditional patch-based sparse representation modeling of natural images usually suffer from two problems. First, it has to solve a large-scale optimization problem with high computational complexity in dictionary learning. Second, each patch is considered independently in dictionary learning and sparse coding, which ignores the relationship among patches, resulting in inaccurate sparse coding coefficients. In this paper, instead of using patch as the basic unit of sparse representation, we exploit the concept of group as the basic unit of sparse representation, which is composed of nonlocal patches with similar structures, and establish a novel sparse representation modeling of natural images, called group-based sparse representation (GSR). The proposed GSR is able to sparsely represent natural images in the domain of group, which enforces the intrinsic local sparsity and nonlocal self-similarity of images simultaneously in a unified framework. Moreover, an effective self-adaptive dictionary learning method for each group with low complexity is designed, rather than dictionary learning from natural images. To make GSR tractable and robust, a split Bregman based technique is developed to solve the proposed GSR-driven minimization problem for image restoration efficiently. Extensive experiments on image inpainting, image deblurring and image compressive sensing recovery manifest that the proposed GSR modeling outperforms many current state-of-the-art schemes in both PSNR and visual perception.Comment: 34 pages, 6 tables, 19 figures, to be published in IEEE Transactions on Image Processing; Project, Code and High resolution PDF version can be found: http://idm.pku.edu.cn/staff/zhangjian/. arXiv admin note: text overlap with arXiv:1404.756

    Natural image restoration based on multi-scale group sparsity residual constraints

    Get PDF
    The Group Sparse Representation (GSR) model shows excellent potential in various image restoration tasks. In this study, we propose a novel Multi-Scale Group Sparse Residual Constraint Model (MS-GSRC) which can be applied to various inverse problems, including denoising, inpainting, and compressed sensing (CS). Our new method involves the following three steps: (1) finding similar patches with an overlapping scheme for the input degraded image using a multi-scale strategy, (2) performing a group sparse coding on these patches with low-rank constraints to get an initial representation vector, and (3) under the Bayesian maximum a posteriori (MAP) restoration framework, we adopt an alternating minimization scheme to solve the corresponding equation and reconstruct the target image finally. Simulation experiments demonstrate that our proposed model outperforms in terms of both objective image quality and subjective visual quality compared to several state-of-the-art methods
    corecore