391,891 research outputs found
Lossless Astronomical Image Compression and the Effects of Noise
We compare a variety of lossless image compression methods on a large sample
of astronomical images and show how the compression ratios and speeds of the
algorithms are affected by the amount of noise in the images. In the ideal case
where the image pixel values have a random Gaussian distribution, the
equivalent number of uncompressible noise bits per pixel is given by Nbits
=log2(sigma * sqrt(12)) and the lossless compression ratio is given by R =
BITPIX / Nbits + K where BITPIX is the bit length of the pixel values and K is
a measure of the efficiency of the compression algorithm.
We perform image compression tests on a large sample of integer astronomical
CCD images using the GZIP compression program and using a newer FITS
tiled-image compression method that currently supports 4 compression
algorithms: Rice, Hcompress, PLIO, and GZIP. Overall, the Rice compression
algorithm strikes the best balance of compression and computational efficiency;
it is 2--3 times faster and produces about 1.4 times greater compression than
GZIP. The Rice algorithm produces 75%--90% (depending on the amount of noise in
the image) as much compression as an ideal algorithm with K = 0.
The image compression and uncompression utility programs used in this study
(called fpack and funpack) are publicly available from the HEASARC web site. A
simple command-line interface may be used to compress or uncompress any FITS
image file.Comment: 20 pages, 9 figures, to be published in PAS
Fractal image compression
Fractals are geometric or data structures which do not simplify under magnification. Fractal Image Compression is a technique which associates a fractal to an image. On the one hand, the fractal can be described in terms of a few succinct rules, while on the other, the fractal contains much or all of the image information. Since the rules are described with less bits of data than the image, compression results. Data compression with fractals is an approach to reach high compression ratios for large data streams related to images. The high compression ratios are attained at a cost of large amounts of computation. Both lossless and lossy modes are supported by the technique. The technique is stable in that small errors in codes lead to small errors in image data. Applications to the NASA mission are discussed
- …
