768 research outputs found

    Positive Definite Kernels in Machine Learning

    Full text link
    This survey is an introduction to positive definite kernels and the set of methods they have inspired in the machine learning literature, namely kernel methods. We first discuss some properties of positive definite kernels as well as reproducing kernel Hibert spaces, the natural extension of the set of functions {k(x,⋅),x∈X}\{k(x,\cdot),x\in\mathcal{X}\} associated with a kernel kk defined on a space X\mathcal{X}. We discuss at length the construction of kernel functions that take advantage of well-known statistical models. We provide an overview of numerous data-analysis methods which take advantage of reproducing kernel Hilbert spaces and discuss the idea of combining several kernels to improve the performance on certain tasks. We also provide a short cookbook of different kernels which are particularly useful for certain data-types such as images, graphs or speech segments.Comment: draft. corrected a typo in figure

    A Survey on Graph Kernels

    Get PDF
    Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification

    Subgraph Matching Kernels for Attributed Graphs

    Full text link
    We propose graph kernels based on subgraph matchings, i.e. structure-preserving bijections between subgraphs. While recently proposed kernels based on common subgraphs (Wale et al., 2008; Shervashidze et al., 2009) in general can not be applied to attributed graphs, our approach allows to rate mappings of subgraphs by a flexible scoring scheme comparing vertex and edge attributes by kernels. We show that subgraph matching kernels generalize several known kernels. To compute the kernel we propose a graph-theoretical algorithm inspired by a classical relation between common subgraphs of two graphs and cliques in their product graph observed by Levi (1973). Encouraging experimental results on a classification task of real-world graphs are presented.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    An Empirical Study on Budget-Aware Online Kernel Algorithms for Streams of Graphs

    Full text link
    Kernel methods are considered an effective technique for on-line learning. Many approaches have been developed for compactly representing the dual solution of a kernel method when the problem imposes memory constraints. However, in literature no work is specifically tailored to streams of graphs. Motivated by the fact that the size of the feature space representation of many state-of-the-art graph kernels is relatively small and thus it is explicitly computable, we study whether executing kernel algorithms in the feature space can be more effective than the classical dual approach. We study three different algorithms and various strategies for managing the budget. Efficiency and efficacy of the proposed approaches are experimentally assessed on relatively large graph streams exhibiting concept drift. It turns out that, when strict memory budget constraints have to be enforced, working in feature space, given the current state of the art on graph kernels, is more than a viable alternative to dual approaches, both in terms of speed and classification performance.Comment: Author's version of the manuscript, to appear in Neurocomputing (ELSEVIER
    • …
    corecore