5,064 research outputs found

    Spiking neurons with short-term synaptic plasticity form superior generative networks

    Get PDF
    Spiking networks that perform probabilistic inference have been proposed both as models of cortical computation and as candidates for solving problems in machine learning. However, the evidence for spike-based computation being in any way superior to non-spiking alternatives remains scarce. We propose that short-term plasticity can provide spiking networks with distinct computational advantages compared to their classical counterparts. In this work, we use networks of leaky integrate-and-fire neurons that are trained to perform both discriminative and generative tasks in their forward and backward information processing paths, respectively. During training, the energy landscape associated with their dynamics becomes highly diverse, with deep attractor basins separated by high barriers. Classical algorithms solve this problem by employing various tempering techniques, which are both computationally demanding and require global state updates. We demonstrate how similar results can be achieved in spiking networks endowed with local short-term synaptic plasticity. Additionally, we discuss how these networks can even outperform tempering-based approaches when the training data is imbalanced. We thereby show how biologically inspired, local, spike-triggered synaptic dynamics based simply on a limited pool of synaptic resources can allow spiking networks to outperform their non-spiking relatives.Comment: corrected typo in abstrac

    EDEN: Evolutionary Deep Networks for Efficient Machine Learning

    Full text link
    Deep neural networks continue to show improved performance with increasing depth, an encouraging trend that implies an explosion in the possible permutations of network architectures and hyperparameters for which there is little intuitive guidance. To address this increasing complexity, we propose Evolutionary DEep Networks (EDEN), a computationally efficient neuro-evolutionary algorithm which interfaces to any deep neural network platform, such as TensorFlow. We show that EDEN evolves simple yet successful architectures built from embedding, 1D and 2D convolutional, max pooling and fully connected layers along with their hyperparameters. Evaluation of EDEN across seven image and sentiment classification datasets shows that it reliably finds good networks -- and in three cases achieves state-of-the-art results -- even on a single GPU, in just 6-24 hours. Our study provides a first attempt at applying neuro-evolution to the creation of 1D convolutional networks for sentiment analysis including the optimisation of the embedding layer.Comment: 7 pages, 3 figures, 3 tables and see video https://vimeo.com/23451009

    A Genetic Programming Approach to Designing Convolutional Neural Network Architectures

    Full text link
    The convolutional neural network (CNN), which is one of the deep learning models, has seen much success in a variety of computer vision tasks. However, designing CNN architectures still requires expert knowledge and a lot of trial and error. In this paper, we attempt to automatically construct CNN architectures for an image classification task based on Cartesian genetic programming (CGP). In our method, we adopt highly functional modules, such as convolutional blocks and tensor concatenation, as the node functions in CGP. The CNN structure and connectivity represented by the CGP encoding method are optimized to maximize the validation accuracy. To evaluate the proposed method, we constructed a CNN architecture for the image classification task with the CIFAR-10 dataset. The experimental result shows that the proposed method can be used to automatically find the competitive CNN architecture compared with state-of-the-art models.Comment: This is the revised version of the GECCO 2017 paper. The code of our method is available at https://github.com/sg-nm/cgp-cn

    Accelerated physical emulation of Bayesian inference in spiking neural networks

    Get PDF
    The massively parallel nature of biological information processing plays an important role for its superiority to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.Comment: This preprint has been published 2019 November 14. Please cite as: Kungl A. F. et al. (2019) Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks. Front. Neurosci. 13:1201. doi: 10.3389/fnins.2019.0120
    corecore