15,119 research outputs found

    Linear Spatial Pyramid Matching Using Non-convex and non-negative Sparse Coding for Image Classification

    Full text link
    Recently sparse coding have been highly successful in image classification mainly due to its capability of incorporating the sparsity of image representation. In this paper, we propose an improved sparse coding model based on linear spatial pyramid matching(SPM) and Scale Invariant Feature Transform (SIFT ) descriptors. The novelty is the simultaneous non-convex and non-negative characters added to the sparse coding model. Our numerical experiments show that the improved approach using non-convex and non-negative sparse coding is superior than the original ScSPM[1] on several typical databases

    Fast Low-rank Representation based Spatial Pyramid Matching for Image Classification

    Full text link
    Spatial Pyramid Matching (SPM) and its variants have achieved a lot of success in image classification. The main difference among them is their encoding schemes. For example, ScSPM incorporates Sparse Code (SC) instead of Vector Quantization (VQ) into the framework of SPM. Although the methods achieve a higher recognition rate than the traditional SPM, they consume more time to encode the local descriptors extracted from the image. In this paper, we propose using Low Rank Representation (LRR) to encode the descriptors under the framework of SPM. Different from SC, LRR considers the group effect among data points instead of sparsity. Benefiting from this property, the proposed method (i.e., LrrSPM) can offer a better performance. To further improve the generalizability and robustness, we reformulate the rank-minimization problem as a truncated projection problem. Extensive experimental studies show that LrrSPM is more efficient than its counterparts (e.g., ScSPM) while achieving competitive recognition rates on nine image data sets.Comment: accepted into knowledge based systems, 201

    Temporal Extension of Scale Pyramid and Spatial Pyramid Matching for Action Recognition

    Full text link
    Historically, researchers in the field have spent a great deal of effort to create image representations that have scale invariance and retain spatial location information. This paper proposes to encode equivalent temporal characteristics in video representations for action recognition. To achieve temporal scale invariance, we develop a method called temporal scale pyramid (TSP). To encode temporal information, we present and compare two methods called temporal extension descriptor (TED) and temporal division pyramid (TDP) . Our purpose is to suggest solutions for matching complex actions that have large variation in velocity and appearance, which is missing from most current action representations. The experimental results on four benchmark datasets, UCF50, HMDB51, Hollywood2 and Olympic Sports, support our approach and significantly outperform state-of-the-art methods. Most noticeably, we achieve 65.0% mean accuracy and 68.2% mean average precision on the challenging HMDB51 and Hollywood2 datasets which constitutes an absolute improvement over the state-of-the-art by 7.8% and 3.9%, respectively

    Image retrieval with hierarchical matching pursuit

    Full text link
    A novel representation of images for image retrieval is introduced in this paper, by using a new type of feature with remarkable discriminative power. Despite the multi-scale nature of objects, most existing models perform feature extraction on a fixed scale, which will inevitably degrade the performance of the whole system. Motivated by this, we introduce a hierarchical sparse coding architecture for image retrieval to explore multi-scale cues. Sparse codes extracted on lower layers are transmitted to higher layers recursively. With this mechanism, cues from different scales are fused. Experiments on the Holidays dataset show that the proposed method achieves an excellent retrieval performance with a small code length.Comment: 5 pages, 6 figures, conferenc
    • …
    corecore