82,375 research outputs found

    PRNU-based image classification of origin social network with CNN

    Get PDF
    A huge amount of images are continuously shared on social networks (SNs) daily and, in most of cases, it is very difficult to reliably establish the SN of provenance of an image when it is recovered from a hard disk, a SD card or a smartphone memory. During an investigation, it could be crucial to be able to distinguish images coming directly from a photo-camera with respect to those downloaded from a social network and possibly, in this last circumstance, determining which is the SN among a defined group. It is well known that each SN leaves peculiar traces on each content during the upload-download process; such traces can be exploited to make image classification. In this work, the idea is to use the PRNU, embedded in every acquired images, as the “carrier” of the particular SN traces which diversely modulate the PRNU. We demonstrate, in this paper, that SN-modulated noise residual can be adopted as a feature to detect the social network of origin by means of a trained convolutional neural network (CNN)

    Between-class Learning for Image Classification

    Full text link
    In this paper, we propose a novel learning method for image classification called Between-Class learning (BC learning). We generate between-class images by mixing two images belonging to different classes with a random ratio. We then input the mixed image to the model and train the model to output the mixing ratio. BC learning has the ability to impose constraints on the shape of the feature distributions, and thus the generalization ability is improved. BC learning is originally a method developed for sounds, which can be digitally mixed. Mixing two image data does not appear to make sense; however, we argue that because convolutional neural networks have an aspect of treating input data as waveforms, what works on sounds must also work on images. First, we propose a simple mixing method using internal divisions, which surprisingly proves to significantly improve performance. Second, we propose a mixing method that treats the images as waveforms, which leads to a further improvement in performance. As a result, we achieved 19.4% and 2.26% top-1 errors on ImageNet-1K and CIFAR-10, respectively.Comment: 11 pages, 8 figures, published as a conference paper at CVPR 201
    • …
    corecore