1,468 research outputs found

    Learning with Augmented Features for Heterogeneous Domain Adaptation

    Full text link
    We propose a new learning method for heterogeneous domain adaptation (HDA), in which the data from the source domain and the target domain are represented by heterogeneous features with different dimensions. Using two different projection matrices, we first transform the data from two domains into a common subspace in order to measure the similarity between the data from two domains. We then propose two new feature mapping functions to augment the transformed data with their original features and zeros. The existing learning methods (e.g., SVM and SVR) can be readily incorporated with our newly proposed augmented feature representations to effectively utilize the data from both domains for HDA. Using the hinge loss function in SVM as an example, we introduce the detailed objective function in our method called Heterogeneous Feature Augmentation (HFA) for a linear case and also describe its kernelization in order to efficiently cope with the data with very high dimensions. Moreover, we also develop an alternating optimization algorithm to effectively solve the nontrivial optimization problem in our HFA method. Comprehensive experiments on two benchmark datasets clearly demonstrate that HFA outperforms the existing HDA methods.Comment: ICML201

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Learning Hypergraph-regularized Attribute Predictors

    Full text link
    We present a novel attribute learning framework named Hypergraph-based Attribute Predictor (HAP). In HAP, a hypergraph is leveraged to depict the attribute relations in the data. Then the attribute prediction problem is casted as a regularized hypergraph cut problem in which HAP jointly learns a collection of attribute projections from the feature space to a hypergraph embedding space aligned with the attribute space. The learned projections directly act as attribute classifiers (linear and kernelized). This formulation leads to a very efficient approach. By considering our model as a multi-graph cut task, our framework can flexibly incorporate other available information, in particular class label. We apply our approach to attribute prediction, Zero-shot and NN-shot learning tasks. The results on AWA, USAA and CUB databases demonstrate the value of our methods in comparison with the state-of-the-art approaches.Comment: This is an attribute learning paper accepted by CVPR 201
    • …
    corecore